首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glycosylation at 158N of the Hemagglutinin Protein and Receptor Binding Specificity Synergistically Affect the Antigenicity and Immunogenicity of a Live Attenuated H5N1 A/Vietnam/1203/2004 Vaccine Virus in Ferrets
Authors:Weijia Wang  Bin Lu  Helen Zhou  Amorsolo L Suguitan  Jr  Xing Cheng  Kanta Subbarao  George Kemble  Hong Jin
Institution:MedImmune, 319 North Bernardo Ave., Mountain View, California 94043,1. Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland 208922.
Abstract:A live attenuated influenza A/Vietnam/1203/2004 (H5N1) vaccine virus (VN04 ca) has receptor binding specificity to α2,3-linked sialosides (α2,3SAL), and a single dose induces a minimal serum antibody response in mice and ferrets. In contrast, A/Hong Kong/213/2003 (H5N1) vaccine virus (HK03 ca) binds to both α2,6SAL and α2,3SAL and generates a stronger serum antibody response in animals. Among the 9 amino acids that differed between the two H5 HA1 proteins, several HK03-specific residues enabled the VN04 ca virus to bind to both α2,3SAL and α2,6SAL receptors, but only the removal of the 158N glycosylation, together with an S227N change, resulted in more-efficient viral replication in the upper respiratory tract of ferrets and an increased serum antibody response. However, the antibody response was HK03 strain specific and did not significantly cross-neutralize VN04 virus. A second approach was taken to adapt the H5N1 VN04 ca virus in MDCK cells to select HA variants with larger plaque morphology. Although a number of large-plaque-size HA variants with amino acid changes in the HA receptor binding region were identified, none of these mutations affected virus receptor binding preference and immunogenicity. In addition, the known receptor binding site changes, Q226L and G228S, were introduced into the HA protein of the VN04 ca virus. Only in conjunction with the removal of the 158N glycosylation did the virus replicate efficiently in the upper respiratory tract of ferrets and became more immunogenic, yet the response was also HK03 specific. Thus, the mask of the antigenic epitopes by 158N glycosylation at the HA globular head and its α2,3SAL binding preference of VN04 ca virus affect virus antigenicity and replication in the host, resulting in a lower antibody response.Influenza A viruses have the potential to cause pandemics of various severities. The emergence of new influenza virus strains to which the general population has low or no immunity, such as the 2009 swine-origin influenza A H1N1 viruses, will continue to challenge public health authorities and the scientific community to develop quick and efficient mitigation responses (18). Highly pathogenic avian influenza A (HPAI) H5N1 viruses pose a serious pandemic threat due to their virulence and high mortality in humans, and their increasingly expanding host reservoir and significant ongoing evolution could enhance their human-to-human transmissibility (8). Currently, the case fatality rate of HPAI H5N1 viruses in humans is estimated to be approximately 60% (30).Although HPAI H5N1 viruses are now endemic in several countries (2), direct transmission of influenza viruses from avian species to humans remains a relatively rare event. The hemagglutinin (HA) protein''s affinity for cell surface sialic acid-containing molecules is one of the determinants of influenza A virus host range restriction. Human and avian influenza virus isolates differ in their recognition of host cell receptors; human strains mainly bind α2,3-linked sialosides (α2,6SAL), whereas the avian strains have a high affinity to α2,3SAL (15, 32). The influenza pandemics of the last century have been suggested to result from switching of HA receptor-binding specificity from α2,3SAL to α2,6SAL receptors (6, 26, 31).The receptor-binding specificity of the HA protein can be influenced by several critical residues. For influenza H3 subtype viruses, substitutions of Q226L and G228S could completely reverse receptor-binding specificity from α2,3SAL to α2,6SAL (4, 21). For the H1 subtype viruses, the E190D and D225G residues switch virus receptor binding specificity from α2,3SAL to α2,6SAL for the 1918 pandemic H1N1 viruses (6, 25). However, based on glycan microarray analysis, the 190E and 225D residues cannot alter the HA binding preference from α2,3SAL to α2,6SAL for H5N1 viruses (26).Vaccination is considered a preferred approach to prevent influenza-related illness in the community. A pandemic influenza vaccine should stimulate protective immunity in the target population using the smallest amount of antigen possible, thus enabling availability of maximal vaccine doses. The inactivated H5N1 VN04 vaccines have been found to be poorly immunogenic in humans, and adjuvants are needed to enhance vaccine immunogenicity (13). Live attenuated influenza vaccines (LAIV) have several desirable attributes: the stimulation of a durable mucosal and systemic immunity, broad efficacy against homologous and drifted strains, and efficient production (17).Several H5N1 LAIV vaccines possessing a modified HA and neuraminidase (NA) of an H5N1 virus and the six internal protein gene segments (PB1, PB2, PA, NP, M, and NS) of the A/Ann Arbor/6/60 (H2N2) cold-adapted (AA ca) master donor virus were previously generated and evaluated for their immunogenicity and efficacy in mice and ferrets (29). A single dose of A/Vietnam/1203/2004 (VN04 ca) LAIV elicited very low levels of serum neutralizing antibodies against homologous and heterologous wild-type (wt) H5N1 viruses 4 weeks after administration to mice and ferrets. In contrast, a single dose of A/Hong Kong/213/2003 (H5N1) (HK03 ca) LAIV was more immunogenic (29). A specific amino acid residue at position 227 in the HK03 HA has been reported to be responsible for the greater immunogenicity of HK03 (9). VN04 and HK03 also differ in their receptor binding specificities. The VN04 HA mainly recognizes α2,3SAL, while the HK03 HA recognizes both α2,3SAL and α2,6SAL (7, 14, 22, 36). Sequence alignment of the two H5 HA proteins revealed nine amino acid differences in their HA1 region (9). The current analysis evaluates the impact of these amino acid differences on H5N1 VN ca vaccine strain replication and immunogenicity. In addition, adaptive mutations selected from MDCK passage of the H5N1 VN04 ca virus and introduction of known receptor binding sites were evaluated for their effect on antigenicity and immunogenicity of the H5N1 VN04 ca virus.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号