首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Species-Specific Contribution of the Four C-Terminal Amino Acids of Influenza A Virus NS1 Protein to Virulence
Authors:Sébastien M Soubies  Christelle Volmer  Guillaume Croville  Josianne Loupias  Brigitte Peralta  Pierrette Costes  Caroline Lacroux  Jean-Luc Guérin  Romain Volmer
Institution:INRA, UMR 1225, Ecole Nationale Vétérinaire de Toulouse, F-31076 Toulouse, France,1. Université de Toulouse, ENVT, UMR 1225, F-31076 Toulouse, France2.
Abstract:Large-scale sequence analyses of influenza viruses revealed that nonstructural 1 (NS1) proteins from avian influenza viruses have a conserved C-terminal ESEV amino acid motif, while NS1 proteins from typical human influenza viruses have a C-terminal RSKV motif. To test the influence of the C-terminal domains of NS1 on the virulence of an avian influenza virus, we generated a wild-type H7N1 virus with an ESEV motif and a mutant virus with an NS1 protein containing a C-terminal RSKV motif by reverse genetics. We compared the phenotypes of these viruses in vitro in human, mouse, and duck cells as well as in vivo in mice and ducks. In human cells, the human C-terminal RSKV domain increased virus replication. In contrast, the avian C-terminal ESEV motif of NS1 increased virulence in mice. We linked this increase in pathogenicity in mice to an increase in virus replication and to a more severe lung inflammation associated with a higher level of production of type I interferons. Interestingly, the human C-terminal RSKV motif of NS1 increased viral replication in ducks. H7N1 virus with a C-terminal RSKV motif replicated to higher levels in ducks and induced higher levels of Mx, a type I interferon-stimulated gene. Thus, we identify the C-terminal domain of NS1 as a species-specific virulence domain.Interspecies transmission of influenza viruses can lead to the introduction of new subtypes of influenza virus into the human population (31). The emergence of a new influenza virus that is able to spread efficiently between humans can cause a pandemic, as evidenced by the recent introduction of the swine-origin 2009 A/H1N1 virus to humans (10). The spread of avian influenza A viruses from birds to humans could also lead to the introduction of a new viral subtype with pandemic potential (22). Fortunately, the efficient replication of avian influenza A viruses in humans and interhuman transmission are generally limited and require further adaptations of the virus to humans. One determinant of host adaptation lies in the receptor binding specificity of hemagglutinin (HA) (52). In addition, several reports have underlined the role of amino acid 627 of the PB2 polymerase subunit in determining viral host range and virulence (15, 36, 44, 45). Large-scale sequence analyses of viruses isolated from different bird and mammalian species have been performed in order to identify previously unrecognized determinants of host adaptation and virulence (2, 32). Those studies have identified a 4-amino-acid motif in the C-terminal domain of NS1 that could represent a previously unnoticed host adaptation motif. Indeed, the vast majority of avian influenza viruses have an NS1 protein with a C-terminal ESEV domain, while typical human viruses have a conserved RSKV domain. The conservation of these species-specific motifs in the NS1 protein despite important sequence variability in the rest of the protein suggests that these four C-terminal amino acids are under strong selection pressure in their respective natural hosts (3, 5, 25).NS1 is a multifunctional protein implicated in the regulation of viral gene expression and in the inhibition of the host antiviral response (12). In order to test the role of these newly identified NS1 domains, Jackson et al. previously introduced various C-terminal motifs into NS1 of the mouse-adapted human influenza virus A/WSN/33 strain by use of reverse genetics (24). Mice inoculated with a virus containing an avian C-terminal ESEV NS1 domain had high viral loads in the lungs and decreased survival compared to mice inoculated with a virus containing a C-terminal RSKV domain. These results showed that the C-terminal ESEV motif found in avian NS1 proteins increases virulence in mice when introduced into a human strain of influenza virus. Whether this finding also applies to avian influenza viruses remains unknown. Moreover, whether the C-terminal ESEV domain of NS1 increases replication in human cells remains unknown. Finally, how the C-terminal domains of NS1 modulate virulence in nonmammalian hosts, such as birds, is also unknown.Here, we assessed the contribution of the C-terminal domains of NS1 to the pathogenicity of an avian influenza virus. By using reverse genetics, we generated H7N1 viruses containing an NS1 protein with a C-terminal avian ESEV domain or a C-terminal human RSKV domain. The replications of these viruses in human, mouse, and duck cell were compared. In addition, we assessed their pathogenicity in mice and ducks. Our results show that the C-terminal RSKV domain increases the replication of an avian influenza virus in human cells. To our surprise, we observed that the C-terminal RSKV domain increases replication in ducks. In contrast, the C-terminal ESEV domain increases virulence in mice. Thus, we identify the C-terminal domain of NS1 as a species-specific virulence domain.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号