首页 | 本学科首页   官方微博 | 高级检索  
     


Isolation and pigment composition of the antenna system of four species of green sulfur bacteria
Authors:Francke  Christof  Amesz  Jan
Affiliation:(1) Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, the Netherlands;(2) Present address: Department of Biological Chemistry, Hebrew University, Givat Ram, Jerusalem, Israel
Abstract:New and rapid procedures were developed for the isolation of chlorosomes and FMO-protein from the green sulfur bacteria Prosthecochloris (P.) aestuarii, Chlorobium (Cb.) phaeovibrioides, Cb. tepidum and Cb. vibrioforme. The resulting preparations were free from contaminating pigments and proteins as was shown by absorption spectroscopy, pigment analysis and SDS-PAGE. Two spectrally different types of FMO-protein were found. The first type, present in P. aestuarii and Cb. vibrioforme, has a main absorption band at 6 K at 815 nm, whereas the second type, isolated from Cb. tepidum and Cb. phaeovibrioides, has a strong band at 806 nm. In contrast to what was recently suggested (Tronrud DE and Matthews BW (1993) In: Deisenhofer J and Norris J (eds) The Photosynthetic Reaction Center, Vol 1, pp 13–21. Academic Press, San Diego, CA) the FMO-proteins contained no polar BChl a homologue. The isolated chlorosomes showed a small blue-shift of the QY absorption maximum with respect to intact cells. For the different species, grown under the same light conditions, the homologue composition of BChls c and d was approximately identical whereas for the BChl e in Cb. phaeovibrioides the relative amounts of homologues with larger alkyl substituents at position 8 were considerably larger. Baseplate BChl a was present in all chlorosomes and comprised 1–2% of the chlorosomal BChl. Its QY absorption band was located at about 802 nm and was clearly separated from the major QY absorption band at 6 K. The predominant esterifying alcohol of BChl a in the chlorosomes as well as in the FMO-proteins was phytol, but both antenna complexes also contained small amounts of BChl a esterified with the metabolic intermediates geranylgeraniol, dihydrogeranylgeraniol and tetrahydrogeranylgeraniol, like most purple bacteria. Since the esterifying alcohols of the chlorosomal BChl a and of the main chlorosomal pigments (BChls c, d and e) are different, esterification, and perhaps also the synthesis, of the BChls in the interior of the chlorosome and of the BChls in the baseplate must be spatially and genetically separated processes.
Keywords:bacteriochlorophyll a, c, d and e  chlorosome  FMO-protein  green sulfur bacterium (Chlorobium phaeovibrioides, Chlorobium tepidum, Chlorobium vibrioforme and Prosthecochloris aestuarii)  pigment composition
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号