首页 | 本学科首页   官方微博 | 高级检索  
     


Burkholderia spp. alter Pseudomonas aeruginosa physiology through iron sequestration
Authors:Weaver Valerie B  Kolter Roberto
Affiliation:Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
Abstract:Pseudomonas aeruginosa and members of the Burkholderia cepacia complex often coexist in both the soil and the lungs of cystic fibrosis patients. To gain an understanding of how these different species affect each other's physiology when coexisting, we performed a screen to identify P. aeruginosa genes that are induced in the presence of Burkholderia: A random gene fusion library was constructed in P. aeruginosa PA14 by using a transposon containing a promoterless lacZ gene. Fusion strains were screened for their ability to be induced in the presence of Burkholderia strains in a cross-streak assay. Three fusion strains were induced specifically by Burkholderia species; all three had transposon insertions in genes known to be iron regulated. One of these fusion strains, containing a transposon insertion in gene PA4467, was used to characterize the inducing activity from Burkholderia: Biochemical and genetic evidence demonstrate that ornibactin, a siderophore produced by nearly all B. cepacia strains, can induce P. aeruginosa PA4467. Significantly, PA4467 is induced early in coculture with an ornibactin-producing but not an ornibactin-deficient B. cepacia strain, indicating that ornibactin can be produced by B. cepacia and detected by P. aeruginosa when the two species coexist.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号