首页 | 本学科首页   官方微博 | 高级检索  
     


Physical forces constrain the depth distribution of the abundant native mussel Elliptio complanata in lakes
Authors:HÉLÈNE CYR
Affiliation:Department of Ecology & Evolutionary Biology, Ramsay Wright Zoological Labs, University of Toronto, Toronto, ON, Canada
Abstract:1. Unionid mussels often account for a large portion of benthic biomass and contribute to nutrient cycling and sediment processes, but are thought to be limited to shallow areas (<2–3 m). 2. The depth distribution and body size of Elliptio complanata were compared in seven Canadian Shield lake basins of different sizes to test what factors determine the upper and lower limit of their depth range. Specifically, I tested whether (i) the upper range of their distribution is limited by exposure to winds and wave action and (ii) the lower range of their distribution is limited by the depth of the thermocline or by the boundary of mud deposition. 3. The average depth distribution of E. complanata shifted to greater depths in larger lake basins. When comparing individual transects, maximum mussel density was found deeper at more exposed sites. Mussel size decreased with increasing depth and was larger, on average, in larger lake basins. These results suggest that physical forces limit the upper range of mussel distribution in lakes. 4. The maximum depth at which mussels were found in different lakes was closely related to thermocline depth. However, mussels were commonly observed below the predicted depth of the mud deposition boundary. The thermocline limits the lower range of mussel distribution in lakes, probably by limiting food availability and by determining water temperature. Substratum type does not limit the lower distribution of mussels. 5. These results suggest that unionid mussels are present in the deeper parts of the littoral zone, especially in large lakes. Therefore, comparisons of mussel populations between sites and between lakes would be biased unless the full depth distribution of these mussels is considered. These results also suggest that long‐term changes in the thermal structure of lakes could affect the range of unionid mussel populations and their functional role in littoral ecosystems.
Keywords:distribution  Elliptio complanata  lake  mussel  unionid
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号