首页 | 本学科首页   官方微博 | 高级检索  
     


Biodegradation of aromatic compounds and TCE by a filamentous bacteria-dominated consortium
Authors:Angela R. Bielefeldt  H. David Stensel
Affiliation:(1) Department of Civil Engineering, University of Washington, Box 352700, Seattle, WA 98195, USA
Abstract:The Michaelis-Menten biodegradation kinetics (k and Ks) of aromatic compounds and trichloroethene (TCE) by an aerobic enrichment culture grown on phenol and dominated by a unique filamentous bacterium were measured. The average k and Ks values for phenol, benzene (B), toluene (T), ethylbenzene (E), o-xylene (oX), p-xylene (pX), naphthalene and TCE in g per g VSS-d and mg L-1 were 5.72 and 0.34, 1.20 and 0.51, 2.09 and 0.47, 0.77 and 0.23, 0.61 and 0.16, 0.73 and 0.23, 0.17 and 0.18, and 0.16 and 0.18, respectively. Significant variability in these measured kinetics was noted between tests conducted over the 5-month period during which the fed-batch culture with a 5-day solids retention time was maintained; the coefficient of variation of the k and Ks values ranged from 11–43% and 4–50%, respectively. This variation was significantly greater than the method measurement error on a given date. Degradation of BTEoXpX mixtures could be described by a basic competitive inhibition model.Batch tests during which the culture was fed individual BTEX compounds showed the culture grew poorly on the xylenes and had poor subsequent xylene degradation rates. This work indicates the potential to simultaneously treat a mixture of volatile organic compounds using this consortium, and the ability to predict the mixture biodegradation rates on the basis of the individual compound biodegradation kinetics.
Keywords:BTEX  competitive inhibition modeling  Michaelis-Menten kinetics  naphthalene  phenol  trichloroethene
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号