首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive Ilex aquifolium co-occurring at two contrasting European sites
Authors:Niinemets U  Valladares F  Ceulemans R
Institution:Department of Plant Physiology, University of Tartu, Riia 23, Tartu 51011, Estonia,; Centro de Ciencias Medioambientales, C.S.I.C., Serrano 115 dpdo., 28006 Madrid, Spain and; Department of Biology, University of Antwerpen (UIA), Universiteitsplein 1, B-2610 Wilrijk, Belgium
Abstract:To understand the role of leaf-level plasticity and variability in species invasiveness, foliar characteristics were studied in relation to seasonal average integrated quantum flux density (Qint) in the understorey evergreen species Rhododendron ponticum and Ilex aquifolium at two sites. A native relict population of R. ponticum was sampled in southern Spain (Mediterranean climate), while an invasive alien population was investigated in Belgium (temperate maritime climate). Ilex aquifolium was native at both sites. Both species exhibited a significant plastic response to Qint in leaf dry mass per unit area, thickness, photosynthetic potentials, and chlorophyll contents at the two sites. However, R. ponticum exhibited a higher photosynthetic nitrogen use efficiency and larger investment of nitrogen in chlorophyll than I. aquifolium. Since leaf nitrogen (N) contents per unit dry mass were lower in R. ponticum, this species formed a larger foliar area with equal photosynthetic potential and light-harvesting efficiency compared with I. aquifolium. The foliage of R. ponticum was mechanically more resistant with larger density in the Belgian site than in the Spanish site. Mean leaf-level phenotypic plasticity was larger in the Belgian population of R. ponticum than in the Spanish population of this species and the two populations of I. aquifolium. We suggest that large fractional investments of foliar N in photosynthetic function coupled with a relatively large mean, leaf-level phenotypic plasticity may provide the primary explanation for the invasive nature and superior performance of R. ponticum at the Belgian site. With alleviation of water limitations from Mediterranean to temperate maritime climates, the invasiveness of R. ponticum may also be enhanced by the increased foliage mechanical resistance observed in the alien populations.
Keywords:invasiveness  light acclimation  light harvesting  nitrogen use-efficiency  phenotypic variability  plasticity  support costs
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号