首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An invariant threonine is involved in self-catalyzed cleavage of the precursor protein for ornithine acetyltransferase
Authors:Marc F  Weigel P  Legrain C  Glansdorff N  Sakanyan V
Institution:Laboratoire de Biotechnologie, FRE-CNRS 2230 Biocatalyse, Faculté des Sciences et des Techniques, Université de Nantes, 44322 Nantes Cedex 3, France.
Abstract:In Bacillus stearothermophilus ornithine acetyltransferase is a bifunctional enzyme, catalyzing the first and the fifth steps of arginine biosynthesis; it follows a ping-pong kinetic mechanism. A single chain precursor protein is cleaved between the alanine and threonine residues in a highly conserved ATML sequence leading to the formation of alpha and beta subunits that assemble into a heterotetrameric 2alpha2beta molecule. The beta subunit has been shown to form an acetylated intermediate in the course of the transacetylation reaction. The present data show that the precursor protein synthesized in vitro or in vivo undergoes a self-catalyzed cleavage involving an invariant threonine (Thr-197). Using site-directed mutagenesis T197G, T197S, and T197C derivatives have been generated. The T197G substitution abolishes both precursor protein cleavage and catalytic activity, whereas T197S and T197C substitutions reduce precursor cleavage and catalytic activity in the order Thr-197 (wild type) --> Ser-197 --> Cys-197. A mechanism is proposed in which Thr-197 plays a crucial role in the autoproteolytic cleavage of ornithine acetyltransferase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号