首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of bacterial strain and temperature changes on the nitrogenase activity of Lotus pedunculatus root nodules
Authors:C E Pankhurst  D B Layzell
Institution:Applied Biochemistry Division, D. S. I. R., Palmerston North, New Zealand.;Dept of Biology, Queen's Univ., Kingston, Ontario, K7L 3N6, Canada.
Abstract:After 40 days of growth at 25°C, Lotus pedunculatus cav., cv. Maku plants infected with Rhizobium loti strain NZP2037 displayed similar relative growth rates but had twice the nodule mass and only one third the whole plant dry weight of plants infected with Bradyrhizobium sp. (Lotus) strain CC814s. In the NZP2037 symbiosis, the rate of CO2 evolution (per g dry weight of nodulated root) was 1.6 times as high as that in the CC814s symbiosis while the rate of C2H2 reduction (per g dry weight of nodule) was only 48% of that in the CC814s symbiosis. Studies of the effect of short term temperature changes on the gas exchange characteristics (CO2 and H2 evolution, C2H2 reduction) of these symbioses revealed wide differences in the optima for C2H2 reduction. Nodules infected with NZP2037 displayed maximal C2H2 reduction rates 157 μmol (g dry weight nodule)?1 h?1] at 12°C, whereas nodules infected with CC814s were optimal at 30°C 208 μmol (g dry weight nodule)?1 h?1]. These short term studies suggested that differences in temperature optima for N2 may have partially accounted for the poorer effectivity, at 25°C, of strain NZP2037 when compared with strain CC-814s. The relative efficiency RE = 1 – (H2 evolution/C2H2 reduction)] of N2 fixation varied widely with temperature in the two symbioses, but there was a general trend toward higher RE with lower temperatures. The ratio of CO2 evolution: C2H2 reduction (mol/mol) in nodulated roots infected with CC814s was constant (ca 10 CO2/C2H2) between 5°C and 30°C, whereas in plants infected with NZP2037 it reached a minimal value of 3.3 CO2/C2H2 at 10°C and was 19 CO2/C2H2 at the growing temperature (25°C).
Keywords:Bradyrhizobium sp  (Lotus)              Rhizobium loti
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号