首页 | 本学科首页   官方微博 | 高级检索  
     


Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium
Authors:Stocker Patrick J  Bennett Eric S
Affiliation:Department of Physiology and Biophysics and Program in Neuroscience, University of South Florida College of Medicine, Tampa, 33612, USA.
Abstract:Voltage-gated sodium channel function from neonatal and adult rat cardiomyocytes was measured and compared. Channels from neonatal ventricles required an approximately 10 mV greater depolarization for voltage-dependent gating events than did channels from neonatal atria and adult atria and ventricles. We questioned whether such gating shifts were due to developmental and/or chamber-dependent changes in channel-associated functional sialic acids. Thus, all gating characteristics for channels from neonatal atria and adult atria and ventricles shifted significantly to more depolarized potentials after removal of surface sialic acids. Desialylation of channels from neonatal ventricles did not affect channel gating. After removal of the complete surface N-glycosylation structures, gating of channels from neonatal atria and adult atria and ventricles shifted to depolarized potentials nearly identical to those measured for channels from neonatal ventricles. Gating of channels from neonatal ventricles were unaffected by such deglycosylation. Immunoblot gel shift analyses indicated that voltage-gated sodium channel alpha subunits from neonatal atria and adult atria and ventricles are more heavily sialylated than alpha subunits from neonatal ventricles. The data are consistent with approximately 15 more sialic acid residues attached to each alpha subunit from neonatal atria and adult atria and ventricles. The data indicate that differential sialylation of myocyte voltage-gated sodium channel alpha subunits is responsible for much of the developmental and chamber-specific remodeling of channel gating observed here. Further, cardiac excitability is likely impacted by these sialic acid-dependent gating effects, such as modulation of the rate of recovery from inactivation. A novel mechanism is described by which cardiac voltage-gated sodium channel gating and subsequently cardiac rhythms are modulated by changes in channel-associated sialic acids.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号