首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of a novel protein, CRR7, required for the stabilization of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis
Authors:Kamruzzaman Munshi M  Kobayashi Yoshichika  Shikanai Toshiharu
Affiliation:Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka, Japan 812-8581.
Abstract:An Arabidopsis thaliana mutant, crr7 (chlororespiratory reduction), was isolated using chlorophyll fluorescence imaging to detect reduced activity in NAD(P)H dehydrogenase (NDH). The chloroplast NDH complex is considered to have originated from cyanobacteria in which the NDH complex is involved in respiration, photosystem I (PSI) cyclic electron transport and CO2 uptake. In higher plants the NDH complex functions in PSI cyclic electron transport within the chloroplast. Despite exhaustive biochemical approaches, the entire subunit composition of the NDH complex is unclear in both cyanobacteria and chloroplasts. In crr7 accumulation of the NDH complex was specifically impaired. In vivo analysis of electron transport supported the specific loss of the NDH complex in crr7. CRR7 (At5g39210) encodes a protein of 156 amino acids, including a putative plastid target signal, and does not contain any known motifs. In contrast to CRR2 and CRR4, involved in the expression of chloroplast ndh genes, CRR7 is conserved in cyanobacterial genomes. Although CRR7 did not contain any transmembrane domains, it localized to the membrane fraction of the chloroplast. CRR7 was unstable in the crr2-2 mutant background, in which the expression of ndhB was impaired. These results strongly suggest that CRR7 is a novel subunit of the chloroplast NDH complex.
Keywords:Arabidopsis    chloroplast    chlororespiration    NDH    photosynthesis    cyclic electron transport
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号