首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Increased levels of UMP synthase protein and mRNA in pyrazofurin-resistant rat hepatoma cells
Authors:D P Suttle
Abstract:Rat hepatoma cells that have undergone stepwise selection in increasing concentrations of pyrazofurin have coordinately increased levels of both orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine-5'-phosphate decarboxylase (EC 4.1.1.23) activity. These two activities catalyze the conversion of orotic acid to UMP in de novo pyrimidine biosynthesis. Cells selected in 50 microM pyrazofurin have over 40 times the wild type level for both activities. A single polypeptide of approximately 55,000 daltons is increased in the resistant cells in amounts corresponding to the increase in the two activities. Resistant cell lines that are grown for extended periods in the absence of pyrazofurin are unstable, losing their elevated levels of both enzyme activities and the increased specific protein. Antibody prepared against a purified protein containing both enzyme activities binds specifically to this increased protein. These results corroborate other evidence indicating the two enzyme activities are contained within a single polypeptide called UMP synthase. Poly(A+) mRNA isolated from wild type and resistant lines was analyzed by in vitro translation for production of UMP synthase protein. Immunoprecipitation of the translation products shows the resistant cells have a 17-fold increase in translatable mRNA activity coding for UMP synthase. The synthase accounts for 0.24% of the total in vitro translation products synthesized with poly(A+) mRNA from the pyrazofurin-resistant cells as opposed to 0.014% with wild type mRNA. A cloned UMP synthase cDNA sequence hybridizes strongly to a 1.8-kilobase mRNA in the resistant cells. This mRNA is only barely detectable in equivalent preparations from wild type cells. Quantitation of the mRNA by dot hybridization techniques indicates a 16-fold increase in UMP synthase mRNA in the resistant cells. Although this increase in mRNA for UMP synthase could explain most of the increased protein, it is not sufficient to totally account for the 40-fold increase in UMP synthase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号