首页 | 本学科首页   官方微博 | 高级检索  
     


Beta‐Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP‐Dependent Mechanism and Wound Angiogenesis
Authors:Andrew P. O'Leary  James M. Fox  Christine E. Pullar
Affiliation:Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
Abstract:Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar‐free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta‐adrenoceptors (β‐AR) are G protein‐coupled receptors (GPCRs) expressed on all skin cell‐types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β‐AR‐mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β‐AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)‐dependent and protein kinase A (PKA)‐independent mechanisms as demonstrated through use of an EPAC agonist that auto‐inhibited the cAMP‐mediated β‐AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β‐AR activation reduced pro‐angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β‐AR‐mediated autocrine and paracrine anti‐angiogenic mechanisms. In more complex environments, β‐AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β‐AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β‐AR agonists could be promising anti‐angiogenic modulators in skin. J. Cell. Physiol. 230: 356–365, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号