首页 | 本学科首页   官方微博 | 高级检索  
     


Extracellular matrices associated with the apical surfaces of sensory epithelia in the inner ear: molecular and structural diversity
Authors:Goodyear Richard J  Richardson Guy P
Affiliation:School of Biological Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom.
Abstract:The ultrastructure and molecular composition of the extracellular matrices that are associated with the apical surfaces of the mechanosensory epithelia in the mouse inner ear are compared. A progressive increase in molecular and structural organization is observed, with the cupula being the simplest, the otoconial membrane exhibiting an intermediate degree of complexity, and the tectorial membrane being the most elaborate of the three matrices. These differences may reflect changes that occurred in the acellular membranes of the inner ear as a mammalian hearing organ arose during evolution from a simple equilibrium receptor. A comparison of the molecular composition of the acellular membranes in the chick inner ear suggests the auditory epithelium and the striolar region of the maculae are homologous, indicating the basilar papilla may have evolved from the striolar region of an otolithic organ. A comparison of the tectorial membranes in the chick cochlear duct and the mouse cochlea reveals differences in the structure of the noncollagenous matrix in the two species that may result from differences in the stochiometry of alpha- and beta-tectorin and/or differences in the post-translational modification of alpha-tectorin. This comparison also indicates that the appearance of collagen in the mammalian tectorial membrane may have been a major step in the evolution of an electromechanically tuned vertebrate hearing organ that operates over an extended frequency range.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号