首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Gating currents of sodium channels in neurons of the rat trigeminal ganglia
Authors:P G Kostyuk  N T Parkhomenko
Institution:(1) Bogomolets Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine;(2) Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Abstract:Using a voltage-clamp technique and intracellular dialysis, gating currents of sodium channels were first recorded and studied in neurons of the rat trigeminal ganglia. The rising phase of gating currents lasted 30 to 70 µsec; these currents decayed in a monoexponential manner with a time constant equal to that for activation of the sodium current. Voltage dependences for the gating charge and sodium conductance were also nearly identical. Analysis of the activation of sodium conductance demonstrated that the power n of the activation variable in the equation used changed from more than 6 to 3 at test potentials of –30 mV and 0 mV, respectively. It is hypothesized that, with a change in the test potential within this voltage range, the cooperativity of activation undergoes a twofold decrease. In the presence of 2 mM caffeine or theophylline in the external solution, curves of the voltage dependence of the gating charge and sodium conductance shifted toward more negative values of the test potential, by 5.4 ± 0.7 mV, the maximum gating charge increased by 8.4 ± 3.2%, and the slope factor for both curves decreased by 9.2 ± 3.4%. Since the above effects were identical for both xanthines and developed under conditions of constant intracellular dialysis, i.e., under conditions where the effect of a change in the intracellular calcium concentration was ruled out, the most probable reason for these effects is a direct action of the tested agents on sodium ion channels, which facilitates the movement of gating charges.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 370–376, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.
Keywords:neurons  gating charge  sodium channels  caffeine
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号