首页 | 本学科首页   官方微博 | 高级检索  
     


Particulate glucan synthetase activity: generation and inactivation after treatments with indoleacetic acid and cycloheximide
Authors:F S Spencer  G Shore  B Ziola  G A Maclachlan
Affiliation:Biology Department, McGill University, Montreal, P.Q. Canada
Abstract:Growing regions from epicotyls of Pisum sativum L. var Alaska contain a particulate enzyme which transfers glucose from guanosine diphosphate glucose to alkali-soluble and -insoluble products (glucan synthetase activity). When the epicotyl is decapitated to remove the source of natural hormone, the tissue below ceases growth and loses synthetase activity as well as the capacity to continue forming cellulose in vivo. If indoleacetic acid (IAA) is added to the cut apex, massive amounts of cellulose are deposited in the next few days. Particulate glucan synthetase activity is either maintained or greatly increased depending on whether endogenous activity levels are relatively high or low at the time of hormone addition. These effects appear to be due in part to IAA-dependent generation of a protein essential for synthetase activity since they are severely inhibited by concentrations of cycloheximide which are effective at preventing protein synthesis. Nevertheless, the addition of cycloheximide alone to the epicotyl reduces the rate of disappearance of synthetase activity, i.e., a protective effect. Also, a soluble thermolabile component is present in the aging epicotyl which promotes loss of synthetase activity when added to the particulate enzyme in vitro. Accordingly, turnover of pea glucan synthetase activity may be controlled in part by an inactivating protein which is itself subject to turnover.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号