首页 | 本学科首页   官方微博 | 高级检索  
     


Putrescine influences growth and production of coumarins in transformed and untransformed root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow local)
Authors:Harsh Pal Bais  G. Sudha  G. A. Ravishankar
Affiliation:(1) Department of Plant Cell Biotechnology, Central Food Technological Research Institute, 570 013 Mysore, India
Abstract:The effect of putrescine on growth and production of two coumarins, esculin, and esculetin in the transformed and untransformed roots of chicory (Cichorium intybus L. cv. Lucknow local) was examined. To study the role of putrescine (Put) on growth and production of coumarins, polyamine inhibitors namely α-DL-difluromethylornithine (DFMO) and α-L-difluromethylarginine (DFMA) were used at 1 mM levels. Treatment with 1.5 mM of putrescine (Put) produced 1.96 - fold and 4.0 - fold increase in the growth of transformed and untransformed roots of chicory, respectively. The treatment with polyamine inhibitors showed much lower growth, as well as production compared with both 1.5 mM putrescine treatment and control in both transformed and untransformed chicory roots. The endogenous polyamines, both free and conjugated, were studied over the whole culture period, and it was seen that conjugated titers of all three polyamines viz., putrescine, spermidine and spermine were higher than level of free polyamines, throughout the culture period in both transformed and untransformed roots of chicory. Treatment in which polyamine inhibitors were used showed lower level of endogenous polyamines as compared with the 1.5 mM putrescine treated sample in both the systems. The treatment wherein putrescine was added at 1.5 mM level showed maximum accumulation of endogenous conjugated putrescine (2098.86±157.6 nmoles g−1 FW; 896.8±67.2 nmoles·g−1 FW), on the 14th day in both transformed and untransformed roots respectively. The production of esculin and esculetin was strictly correlated with growth in every treatment in both systems. Putrescine at 1.5 mM resulted in greater length of primary root in transformed (18.3±1.4 cm) and untransformed (6.86±0.51 cm) as compared with their respective controls (11±0.9 cm; 2.9±0.1cm) and greater number of secondary and tertiary roots. This study suggests that putrescine influences plant root development and differentiation, and it also provides insight into the morphological changes that occur in roots in response to the external supply of polyamines.
Keywords:Cichorium intybus L. Cv. Lucknow local  transformed  untransformed  root cultures  polyamines  coumarins
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号