首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulatory roles of NKT cells in the induction and maintenance of cyclophosphamide-induced tolerance
Authors:Iwai Toshiro  Tomita Yukihiro  Okano Shinji  Shimizu Ichiro  Yasunami Yohichi  Kajiwara Takashi  Yoshikai Yasunobu  Taniguchi Masaru  Nomoto Kikuo  Yasui Hisataka
Institution:Department of Cardiovascular Surgery, Department of Pathology, Greaduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Abstract:We have previously reported the sequential mechanisms of cyclophosphamide (CP)-induced tolerance. Permanent acceptance of donor skin graft is readily induced in the MHC-matched and minor Ag-mismatched recipients after treatment with donor spleen cells and CP. In the present study, we have elucidated the roles of NKT cells in CP-induced skin allograft tolerance. BALB/c AnNCrj (H-2(d), Lyt-1.2, and Mls-1(b)) wild-type (WT) mice or Valpha14 NKT knockout (KO) (BALB/c) mice were used as recipients, and DBA/2 NCrj (H-2(d), Lyt-1.1, and Mls-1(a)) mice were used as donors. Recipient mice were primed with 1 x 10(8) donor SC i.v. on day 0, followed by 200 mg/kg CP i.p. on day 2. Donor mixed chimerism and permanent acceptance of donor skin allografts were observed in the WT recipients. However, donor skin allografts were rejected in NKT KO recipient mice. In addition, the donor reactive Vbeta6(+) T cells were observed in the thymus of a NKT KO recipient. Reconstruction of NKT cells from WT mice restored the acceptance of donor skin allografts. In addition, donor grafts were partially accepted in the thymectomized NKT KO recipient mice. Furthermore, the tolerogen-specific suppressor cell was observed in thymectomized NKT KO recipient mice, suggesting the generation of regulatory T cells in the absence of NTK cells. Our results suggest that NKT cells are essential for CP-induced tolerance and may have a role in the establishment of mixed chimerism, resulting in clonal deletion of donor-reactive T cells in the recipient thymus.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号