Intermolecular hydrogen transfer catalyzed by a flavodehydrogenase, bakers' yeast flavocytochrome b2 |
| |
Authors: | P Urban F Lederer |
| |
Abstract: | Bakers' yeast flavocytochrome b2 is a flavin-dependent L-2-hydroxy acid dehydrogenase which also exhibits transhydrogenase activity. When a reaction takes place between [2-3H]lactate and a halogenopyruvate, tritium is found in water and at the halogenolactate C2 position. When the halogenopyruvate undergoes halide ion elimination, tritium is also found at the C3 position of the resulting pyruvate. The amount tau of this intermolecular tritium transfer depends on the initial keto acid-acceptor concentration. At infinite acceptor concentration, extrapolation yields a maximal transfer of 97 +/- 11%. This indicates that the hydroxy acid-derived hydrogen resides transiently on enzyme monoprotic heteroatoms and that exchange with bulk solvent occurs only at the level of free reduced enzyme. Using a minimal kinetic scheme, the rate constant for hydrogen exchange between Ered and solvent is calculated to be on the order of 10(2) M-1 S-1, which leads to an estimated pK approximately equal to 15 for the ionization of the substrate-derived proton while on the enzyme. It is suggested that this hydrogen could be shared between the active site base and Flred N5 anion. It is furthermore shown that some tritium is incorporated into the products when the transhydrogenation is carried out in tritiated water. Finally, with [2-2H]lactate-reduced enzyme, a deuterium isotope effect is observed on the rate of bromopyruvate disappearance. Extrapolation to infinite bromopyruvate concentration yields DV = 4.4. An apparent inverse isotope effect is determined for bromide ion elimination. These results strengthen the idea that oxidoreduction and elimination pathways involve a common carbanionic intermediate. |
| |
Keywords: | |
|
|