首页 | 本学科首页   官方微博 | 高级检索  
     


The inhibition of exogenous NAD(P)H oxidation in plant mitochondria by chelators and mersalyl as a function of pH
Authors:Ian M. Mö  ller,John M. Palmer
Affiliation:Department of Plant Physiology, University of Lund, Box 7007, S-220 07 Lund, Sweden.;Department of Pure and Applied Biology, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BB, England.
Abstract:The oxidation of exogenous NADH by Jerusalem artichoke ( Helianthus tuberosus L.) tuber mitochondria was strongly inhibited at pH 7.2 by EDTA, EGTA and mersalyl and by chlorotetracycline in the presence of Ca2+. This inhibition disappeared at pH 5.5 where about 50% activity was found as compared to controls at pH 7.2. The rate of oxidation of NADPH at pH 5.5 was the same as for NADH but it was inhibited by 50% by both EDTA and mersalyl.
Mitochondria from Arum maculatum spadices oxidised NADH and NADPH with pH optima of 7.2 and 6.5, respectively. In the presence of EDTA the optima shifted to 6.7 and 5.9, respectively, due to an inhibition at higher pH and a lack of inhibition at lower pH. At pH 6.7 NADH oxidation was completely insensitive to both EDTA and mersalyl whereas the oxidation of NADPH was inhibited by more than 50%. The inhibition of NAD(P)H oxidation by chelators at neutral pH was due to the removal of Ca2+ from the membranes in both types of mitochondria. The differences observed in the properties of NADH and NADPH oxidation suggest that two different dehydrogenases are involved. Because of the strong pH-dependence and the changes in chelator-sensitivity in the physiological pH-range 6–8 it is suggested that the properties of NAD(P)H oxidation provide the cell with important means of metabolic regulation.
Keywords:Ca2+    Mg2+    membrane-bound cations    EDTA    EGTA    chlorotetracycline
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号