首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In human leukemia cells ephrin-B-induced invasive activity is supported by Lck and is associated with reassembling of lipid raft signaling complexes
Authors:Jiang Guangping  Freywald Tanya  Webster Jarret  Kozan Daniel  Geyer Ron  DeCoteau John  Narendran Aru  Freywald Andrew
Institution:Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada.
Abstract:Proteins of the ephrin-B group operate in nonlymphoid cells through the control of their migration and attachment, and are crucial for the development of the vascular, lymphatic, and nervous systems. Ephrin-B activity is deregulated in various nonlymphoid malignancies; however, their precise role in cancer has only started to be addressed. We show here that ephrin-B1, a member of the ephrin-B group, is expressed in pediatric T-cell leukemias, including leukemia cell line Jurkat. Treatment of Jurkat cells with ephrin-B-stimulating EphB3 enhances ephrin-B1 phosphorylation and induces its relocalization into lipid rafts. These events are mediated by the T lineage-specific kinase, Lck, as ephrin-B1 phosphorylation and lipid raft association are blocked in the Lck-deficient clone of Jurkat, JCAM1.6. Ephrin-B1 also induces colocalization of the CrkL and Rac1 cytoskeleton regulators and initiates in leukemic cells a strong repulsive response. The absence of Lck blocks ephrin-B1-induced signaling and repulsion, confirming the essential role for Lck in ephrin-B1-mediated responses. This shows a new role for ephrin-B1 in the regulation of leukemic cells through the Lck-dependent Rac1 colocalization with its signaling partner, CrkL, in lipid rafts. In agreement with its repulsive action, ephrin-B1 seems to support metastatic properties of leukemic cells, as suppression of ephrin-B1 signaling inhibits their invasiveness. Because ephrin-B1-activating EphB proteins are ubiquitously expressed, our findings suggest that ephrin-B1 is likely to play an important role in the regulation of malignant T lymphocytes through the control of lipid-raft-associated signaling, adhesion, and invasive activity, and therefore may represent a novel target for cancer treatment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号