首页 | 本学科首页   官方微博 | 高级检索  
     


The unfolded protein response plays dual roles in rice stripe virus infection through fine-tuning the movement protein accumulation
Authors:Chenyang Li  Yi Xu  Shuai Fu  Yu Liu  Zongdi Li  Tianze Zhang  Jianxiang Wu  Xueping Zhou
Affiliation:1. State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China;2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China;3. Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China;University of California, Davis Genome Center, UNITED STATES
Abstract:The movement of plant viruses is a complex process that requires support by the virus-encoded movement protein and multiple host factors. The unfolded protein response (UPR) plays important roles in plant virus infection, while how UPR regulates viral infection remains to be elucidated. Here, we show that rice stripe virus (RSV) elicits the UPR in Nicotiana benthamiana. The RSV-induced UPR activates the host autophagy pathway by which the RSV-encoded movement protein, NSvc4, is targeted for autophagic degradation. As a counteract, we revealed that NSvc4 hijacks UPR-activated type-I J-domain proteins, NbMIP1s, to protect itself from autophagic degradation. Unexpectedly, we found NbMIP1 stabilizes NSvc4 in a non-canonical HSP70-independent manner. Silencing NbMIP1 family genes in N. benthamiana, delays RSV infection, while over-expressing NbMIP1.4b promotes viral cell-to-cell movement. Moreover, OsDjA5, the homologue of NbMIP1 family in rice, behaves in a similar manner toward facilitating RSV infection. This study exemplifies an arms race between RSV and the host plant, and reveals the dual roles of the UPR in RSV infection though fine-tuning the accumulation of viral movement protein.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号