首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A GTPase Chimera Illustrates an Uncoupled Nucleotide Affinity and Release Rate,Providing Insight into the Activation Mechanism
Authors:Amy?P Guilfoyle  Chandrika?N Deshpande  Josep Font Sadurni  Miriam-Rose Ash  Samuel Tourle  Gerhard Schenk  Megan?J Maher  Mika Jormakka
Institution:1.Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia;2.Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales, Australia;3.Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark;4.School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia;5.La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
Abstract:The release of GDP from GTPases signals the initiation of a GTPase cycle, where the association of GTP triggers conformational changes promoting binding of downstream effector molecules. Studies have implicated the nucleotide-binding G5 loop to be involved in the GDP release mechanism. For example, biophysical studies on both the eukaryotic Gα proteins and the GTPase domain (NFeoB) of prokaryotic FeoB proteins have revealed conformational changes in the G5 loop that accompany nucleotide binding and release. However, it is unclear whether this conformational change in the G5 loop is a prerequisite for GDP release, or, alternatively, the movement is a consequence of release. To gain additional insight into the sequence of events leading to GDP release, we have created a chimeric protein comprised of Escherichia coli NFeoB and the G5 loop from the human Giα1 protein. The protein chimera retains GTPase activity at a similar level to wild-type NFeoB, and structural analyses of the nucleotide-free and GDP-bound proteins show that the G5 loop adopts conformations analogous to that of the human nucleotide-bound Giα1 protein in both states. Interestingly, isothermal titration calorimetry and stopped-flow kinetic analyses reveal uncoupled nucleotide affinity and release rates, supporting a model where G5 loop movement promotes nucleotide release.The hydrolysis of guanosine triphosphate (GTP) by GTPases, such as the oncoprotein p21 Ras and heterotrimeric Gα proteins, is a critical regulatory activity for cell growth and proliferation (1). Aberrant GTPases are consequently often implicated in tumorigenesis, developmental disorders, and metabolic diseases (2). Critical for the initiation of a GTPase cycle is the release of guanosine diphosphate (GDP), which allows GTP to bind and switch the protein from an inactive to an active conformation. The GTP is subsequently hydrolyzed to GDP and inorganic phosphate, returning the GTPase to an inactive conformation (3).Given that the release of GDP is the fundamental step in the initiation of a GTPase cycle, the detailed mechanism by which it is released has been under intense scrutiny. Studies using double electron-electron resonance, deuterium-exchange, Rosetta energy analysis, and electron paramagnetic resonance, have shown that the mechanism involves conformational changes in the nucleotide-coordinating G5 loop, one of five nucleotide recognition motifs (4, 5, 6, 7, 8, 9, 10, 11). Structural studies of eukaryotic Gα proteins and the intracellular TEES-type GTPase domain of the prokaryotic iron transporter FeoB (NFeoB) have also illustrated distinct conformations of the G5 loop, depending on the nucleotide-bound state (9, 12).Recently, we reported mutational studies of the G5 loop of Escherichia coli NFeoB, which illustrated a correlation between the sequence composition of the loop and the intrinsic GDP release rate (13). However, despite these observations, it is unclear whether the observed conformational changes in the G5 loop are a prerequisite for GDP release, or if the movement is a consequence of GDP release. To address this fundamental question, in this study we have used a combination of protein engineering and biophysical methods.Initially, to assess the relevance of conformational flexibility in the G5 loop, we aimed to create a protein chimera combining sequence and structural characteristics of both fast and slow GDP-releasing GTPases. We thus engineered a protein chimera using E. coli NFeoB as the scaffold (a protein with fast intrinsic GDP release) and substituted the G5 loop with that of a slow GDP-releasing protein (the human Giα1 protein; Gene ID 2770; Fig. 1 A (5)). GTP hydrolysis assays comparing wild-type (wt) NFeoB (wtNFeoB) and the protein chimera (ChiNFeoB) validated the integrity of the GTPase activities of both proteins (kcat = 0.46 and 0.36 min−1, respectively). To further assess the ChiNFeoB protein, we determined its crystal structure at 2.2 Å resolution (see Table S1 in the Supporting Material). The ChiNFeoB structure contains two molecules in the asymmetric unit, with molecule A bound to GDP. They are essentially identical to the nucleotide-bound wtNFeoB structure (root-mean-square deviation of 1.2 Å over 226 Cα atoms; Fig. 2).Open in a separate windowFigure 1Chimera model and structural comparison. (A) Illustration highlighting the chimera sequence change. (Orange) Sequence of the extended G5 loop from Giα1, which replaced the NFeoB sequence (gray). (B–F) Structural comparison of the G5 loop between (B) WT apo (PDB:3HYR) and nucleotide-bound (PDB:3HYT) NFeoB structures. (C) NFeoB nucleotide-bound and Giα1 (PDB:2ZJZ). (D) Nucleotide-bound NFeoB and chimera (Chi_GDP). (E) Nucleotide-bound chimera and Giα1. (F) Nucleotide-free (Chi_apo) and bound chimera protein. (G) Overview of the nucleotide binding site and structural overlay of chimera and Giα1 structures. To see this figure in color, go online.Open in a separate windowFigure 2Superimposition of nucleotide-bound NFeoB and chimera protein, with thermodynamic parameters. To see this figure in color, go online.However, the ChiNFeoB structure, when compared to the wtNFeoB structure, revealed an alteration in the conformation of the G5 loop, showing an extra turn on the N-terminal end of the α6 helix. This is structurally distinct from the wtFeoB protein, but with a conformation similar to that of the Giα1 protein (PDB:2ZJZ; Fig. 1, B–F). As in the crystal structures of wtNFeoB and Giα1, ChiNFeoB residues implicated in coordination of the nucleotide base maintain their positions in the G5 loop relative to GDP. In particular, residues Ala150 and Thr151 (NFeoB numbering, the asterisk indicates Giα1 chimera residue) are involved in electrostatic interactions with the nucleotide base moiety, analogous to the structures of both wtNFeoB and Giα1 (Fig. 1 G). Serendipitously, the second molecule in the asymmetric unit of ChiNFeoB (molecule B) was present in the nucleotide-free state. The two molecules (GDP-bound and nucleotide-free) are nearly identical (the superposition of molecules A and B yields a root-mean-square deviation of 0.36 Å over 229 Cα atoms), with the G5 loop adopting a nearly indistinguishable conformation compared to that of the GDP-bound molecule A (Fig. 1 F).Importantly, this conformation is independent of the crystallographic packing, inasmuch as the loop is not involved in any crystal contacts. In contrast, the structures of nucleotide-bound and nucleotide-free wtNFeoB illustrated a large conformational change in the G5 loop (Fig. 1 B). Hence, the substitution in the chimera extends the secondary structure of the α6 helix, and as hypothesized, the engineered ChiNFeoB protein has a G5 loop structure that is more conformationally stable than that of wtNFeoB.We subsequently measured the affinity of the ChiNFeoB protein for GDP using isothermal titration calorimetry (ITC). Nonlinear regression was used to attain the thermodynamic parameters (including the GDP binding affinity, Ka; the corresponding dissociation constant (Kd) was calculated from the equation Kd = 1/Ka). Interestingly, these measurements revealed the ChiNFeoB protein to have an almost 10-fold reduced affinity for GDP (82 vs. 9 μM measured for the WT protein; Fig. 2). In contrast, in a recent alanine scanning mutagenesis study of the G5 loop we observed a fivefold increase in affinity for GDP in a Ser150Ala mutant (2 μM) (14). This mutant protein has a coordination environment for the GDP base analogous to that of the ChiNFeoB protein (Fig. 1 A), indicating that it is not the presence of an alanine at position 150 that causes the reduced GDP affinity observed for the chimera protein. Instead, the analysis by ITC and comparison with previous mutagenesis studies indicates that the GDP binding site is less accessible in the ChiNFeoB protein, likely due to the introduction of conformational rigidity that accompanies the extension of secondary structural elements within the loop (Fig. 1 D).To further evaluate the functional characteristics of the chimera protein, we used stopped-flow fluorescence assays to determine the rate of nucleotide dissociation (koff) and association (kon) for the ChiNFeoB protein. The association rate for the GTP analog mant-GMPPNP was determined from the slope of a linear plot of protein concentration versus the observed association constant (kobs). The kon for the chimera was determined to be 3.20 μM−1 min−1 (Supporting Material), the dissociation rate (koff) of GDP for the chimera was determined to be 16.6 s−1 (vs. 144 s−1 for wtNFeoB;
DesignationmGMPPNPmGDP
Proteinkona (μM−1 min−1)koffb (min−1)Kdc (μM)kond (μM−1 min−1)koffe (s−1)
NFeoB8.1 ± 0.178.6 ± 1.69.715.9144.7 ± 2.0
Chimera3.2 ± 0.1208.2 ± 1.365.10.216.61 ± 0.50
Open in a separate windowAll values are the average of three or more stopped-flow experiments with each experiment consisting of five or more replicates.akon was determined from the slope of the linear plot formed by kobs at protein concentrations between 1.25 and 40 μM.bkoff was determined from the y-intercept of the linear plot.cKd was determined from the ratio of koff to kon.dkon was determined from the ratio of koff (mGDP) to Kd (GDP; ITC).emGDP dissociation rates (koff) were determined by fitting a single exponential function to stopped-flow data.We have previously observed a consistent correlation between nucleotide affinity and release rates (e.g., high affinity, slow release), and the uncoupling of this relationship, observed in this study, provides clues to the mechanism of the nucleotide release in GTPases. As observed in our structural analysis, the extension of the α6 helix in the chimera protein generates a shorter G5 loop that is more stable in the nucleotide-coordinating conformation, a conformation retained in both the GDP-bound and the apo states of the protein. Because the nucleotide pocket remains capped, it is likely to be less accessible for nucleotide binding, providing a rationale for its reduced GDP affinity (Fig. 2) and on-rate (Fig. 1 B) in particular, likely plays a significant role in the observed rapid intrinsic GDP release mechanism (12, 15). Future studies generating a reciprocal chimera, using the Giα1 protein as a scaffold and the FeoB G5 motif insert, could provide further support for these results.In summary, our combined results support a model where G5 loop movement precedes GDP release, and illustrates that loop movement can act to catalyze both intrinsic and coupled nucleotide release.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号