首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in membrane potential, membrane resistance, and intracellular H, K, Na, and Cl activities during the progesterone-induced maturation of urodele amphibian oocytes
Authors:J. L. Rodeau  J. P. Vilain  
Abstract:Changes in intracellular activities of H+, K+, Na+, and Cl ions were recorded with ion-selective microelectrodes during progesterone-induced maturation of full-grown oocytes of the urodele amphibians Ambystoma mexicanum and Pleurodeles waltlii. The membrane potential (Em) and electrical resistance (Rm) were also determined. During the first hours after initiation of maturation, the oocytes slowly depolarized and Rm gradually increased. By the end of maturation of Pleurodeles oocytes Em had stabilized at about −10 mV and Rm had increased from 410 to 1760 kΩ. The same initial pattern was observed for Ambystoma, but in most oocytes a rapid transition occurred at about the time of germinal vesicle breakdown (GVBD): Em spontaneously shifted from about −15 to about +30 mV; simultaneously Rm dropped from 1230 down to 100 kΩ (i.e., less than the initial 270 kΩ resistance). The internal K+ activity did not show any important variation during maturation of Ambystoma and Pleurodeles oocytes. Na+ activity increased slightly at the onset of GVBD in Ambystoma; a further marked increase of Na+, accompanied by an increase in Cl activity, was observed as soon as Em shifted to a positive value. In Pleurodeles sodium activity was also more elevated in matured than in immature oocytes. The average pH of Ambystoma immature oocytes was 7.48 ± 0.05 (external pH 7.5). A transient alkalinization to 7.64 ± 0.04 took place during the first 4–6 hr postprogesterone. Cytoplasmic pH was restored to 7.50 ± 0.07 between 10 and 12 hr postprogesterone, before the onset of GVBD and the shift of Em. The difference between the measured oocyte pH and the calculated equilibrium pH decreases during the course of maturation, due partly to the depolarization of Em.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号