首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA synthesis and proliferation of human lymphocytes in vitro: III. Fate of cycling cells in aging cultures of phytohemagglutinin stimulated human lymphocytes
Authors:John Mendelsohn  Dorothy Hudig  Janice Castagnola
Abstract:There are few data available on cell cycle events that occur when proliferation of normal cells in culture is curtailed due to “natural aging” of the culture conditions. Stathmokinetic and cytofluorometry studies were performed on PHA-stimulated human lymphocyte cultures for eight consecutive days. Cell proliferation peaked on day 5 and then gradually decreased. Percent labeled mitosis curves performed each day demonstrated that, for those cells which progressed to mitosis, the cell cycle time remained constant at 18 ± 1 hour throughout the entire period of culture. However when the fate of all cells pulse-labeled with 3H-thymidine (S phase cells) was followed daily, only 64 ± 5% of labeled cells reached mitosis on day 3 and <20% on day 6. When the growth fraction was estimated by standard methods (with the labeling index) and used to predict future cell counts in the culture, proliferation was greatly overestimated; but after correcting the growth fraction for labeled cells not reaching mitosis, proliferation was accurately predicted by a newly derived “dividing fraction.” Flow cytofluorometry confirmed accumulation of cells in S and G2 + M phases, and mitotic indices ruled out accumulation in M phase. Assessment of non-viable cells with cytofluorometry demonstrated that death occurred in all phases of the cell cycle. We conclude that with increasing age of culture, an increased fraction of cycling PHA-stimulated lymphocytes fail to progress all the way to mitosis and are arrested in S or G2 phases. These observations provide evidence against the existence of a specific “restriction point” in G1 or at the G1/S interface in aging proliferating human lymphocyte cultures, but it remains to be determined whether cells arrested in S or G2 phases retain the capacity to complete the cell cycle in more favorable culture environments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号