首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermodynamics and equilibrium sedimentation analysis of the close approach of DNA molecules and a molecular ordering transition
Authors:A A Brian  H L Frisch  L S Lerman
Abstract:Measurement of the equilibrium distribution of persistence length fragments of DNA in high concentration in the ultracentrifuge shows that the reduced osmotic pressure rises much faster than linearly. From analysis of the data in terms of the Zimm cluster integral we infer that the net interactions between helices are purely repulsive at all distances. A theoretical equation of state derived from scaled particle theory with one adjustable parameter is in excellent agreement with the experimental data so long as the salt concentration is not excessively low. The parameter represents the hard-core radius in a simplified approximation to the potential function for the electrostatic repulsion between helices. Its value depends on the salt concentration, and it shrinks at high salt to a radius in close agreement with direct structural estimates. At a particular value of the osmotic pressure that is only slightly salt dependent, the solution undergoes a reversible transition to a denser, turbid, optically anisotropic phase. The relation between DNA volume fraction, including the electrostatic radius, at the transition point and the effective asymmetry of the molecules as a function of salt is in approximate correspondence with various theoretical treatments. However, the experimental function extrapolates to the correct limit for spherical particles. The work needed to bring DNA to a high concentration is estimated. The results suggest that the phase transition is first order.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号