首页 | 本学科首页   官方微博 | 高级检索  
     


Stabilization and re-activation of trapped enzyme by immobilized heat shock protein and molecular chaperones
Authors:Yang Yunhui  Zeng Jiang  Gao Chunguang  Krull Ulrich J
Affiliation:Department of Chemistry, Chemical Sensors Group, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, ON, Canada L5L 1C6.
Abstract:The potential of using immobilized Heat Shock Protein 70 (HSP 70) in combination with other molecular chaperones to ameliorate problems of enzyme denaturation was investigated. Firefly luciferase was used as a model enzyme due to its sensitivity to thermal denaturation, and the availability of a sensitive chemiluminescent assay method for determination of relative activity of this enzyme. Control experiments and development of effective combinations of HSP with other chaperones involved re-activation of enzyme in bulk solution. A combination of HSP 70, alpha-crystallin and reticulocyte lysate (RL) in bulk solution were found to re-activate soluble firefly luciferase to about 60% of the initial activity after the enzyme activity had been reduced to less than 2% by thermal denaturation. HSP 70 that was covalently immobilized onto glass surfaces was also able to re-activate denatured enzyme that was in bulk solution. Over 30% of the initial activity could be regained from heat denatured enzyme when using immobilized HSP in the presence of other chaperones. The activity of soluble enzyme decayed to negligible values in a period of days when stored at room temperature. In the presence of immobilized HSP and chaperones, activity stabilized at about 10% of the initial activity even after many weeks. The results suggest that immobilized molecular chaperones such as HSP 70 may provide some potential for stabilization and re-activation of enzymes that are trapped in thin aqueous films for applications in biosensors and reactors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号