首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth of <Emphasis Type="Italic">Dehalococcoides mccartyi</Emphasis> species in an autotrophic consortium producing limited acetate
Authors:" target="_blank">Chang Ding  Lisa Alvarez-Cohen  Jianzhong He
Institution:1.Department of Civil and Environmental Engineering,National University of Singapore,Singapore,Singapore;2.Department of Civil and Environmental Engineering,University of California,Berkeley,USA;3.Earth Sciences Division,Lawrence Berkeley National Laboratory,Berkeley,USA;4.Department of Isotope Biogeochemistry,Helmholtz-Centre for Environmental Research - UFZ,Leipzig,Germany;5.Department of Civil and Environmental Engineering,National University of Singapore,Singapore,Singapore
Abstract:The dechlorinating Dehalococcoides mccartyi species requires acetate as carbon source, but little is known on its growth under acetate limiting conditions. In this study, we observed growth and dechlorination of a D. mccartyi-containing mixed consortium in a fixed-carbon-free medium with trichloroethene in the aqueous phase and H2/CO2 in the headspace. Around 4 mM formate was produced by day 40, while acetate was constantly below 0.05 mM. Microbial community analysis of the consortium revealed dominance by D. mccartyi and Desulfovibrio sp. (57 and 22% 16S rRNA gene copies, respectively). From this consortium, Desulfovibrio sp. strain F1 was isolated and found to produce formate and acetate (1.2 mM and 48 µM, respectively, by day 24) when cultivated alone in the above mentioned medium without trichloroethene. An established co-culture of strain F1 and D. mccartyi strain 195 demonstrated that strain 195 could grow and dechlorinate using acetate produced by strain F1; and that acetate was constantly below 25 µM in the co-culture. To verify that such low level of acetate is utilizable by D. mccartyi, we cultivated strain 195 alone under acetate-limiting conditions and found that strain 195 consumed acetate to below detection (5 µM). Based on the acetate consumption and cell yield of D. mccartyi, we estimated that on average 1.2?×?108 acetate molecules are needed to supply carbon for one D. mccartyi cell. Our study suggests that Desulfovibrio may supply a steady but low amount of fixed carbon to dechlorinating bacteria, exhibiting important implications for natural bio-attenuation when fixed carbon is limited.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号