首页 | 本学科首页   官方微博 | 高级检索  
     


Okadaic acid-induced hyperphosphorylation of the epidermal growth factor receptor. Comparison with receptor phosphorylation and functions affected by another tumor promoter, 12-O-tetradecanoylphorbol-13-acetate.
Authors:S M Hernández-Sotomayor  M Mumby  G Carpenter
Affiliation:Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
Abstract:Okadaic acid, a potent tumor promoter and inhibitor of phosphoserine/threonine protein phosphatases 1 and 2A, produces a large increase in epidermal growth factor (EGF) receptor phosphorylation in several cell types. The increases are limited to phosphoserine and phosphothreonine residues. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a distinct tumor promoter and protein kinase C activator, also induces serine/threonine phosphorylation of the EGF receptor and is known to modulate receptor functions. Comparison of okadaic acid and TPA influences on the EGF receptor show significant differences. Okadaic acid did not promote phosphorylation of Thr-654, a major site of TPA-induced phosphorylation. However, other sites of phosphorylation were similar for the two tumor promoters. In vitro experiments with purified protein phosphatase 2A demonstrate the insensitivity of Thr-654 phosphorylation, which regulates EGF receptor function, to dephosphorylation by this okadaic acid-sensitive protein phosphatase. In contrast to TPA, okadaic acid did not attenuate the tyrosine kinase activity or ligand binding capacity of the EGF receptor. However, okadaic acid did produce a decrease in EGF-stimulated inositol phosphate formation in a manner distinct from that of TPA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号