首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Contribution of p53 in the Dynamics of Cell Cycle Response to DNA Damage Interpreted by a Mathematical Model
Abstract:Despite numerous studies on the tumor suppressor p53, a complete picture of its role in cell arrest and killing in G1, S and G2M phases after drug treatment is lacking. We tackled the analysis of the complexity of cell cycle effects combining the time-course measures with different techniques with the aid of a computer program simulating cell cycle progression. This mixed experimental-simulation approach enabled us to decode the dynamics of the cytostatic and cytotoxic responses to cisplatin and doxorubicin treatments in a p53-proficient colon carcinoma cell line (HCT-116) and in its p53-deficient counterpart. We achieved a separate evaluation of the activity of each cell cycle control and we connected these results with measures of p53 level in G1, S and G2M. We confirmed the action of p53 in all cell cycle phases, but also the presence of strong p53-independent cytostatic and cytotoxic activities exerted by both drugs. In G1 phase, p53 was responsible for a medium/long term block, distinct from the short-term block, which was p53-independent. The delay in traversing S phase was reduced by the presence of p53. In G2M phase, despite a strong p53-independent block, there was a weaker but more persistent p53-dependent block. At cytotoxic concentrations, p53-dependent and p53-independent cell death was observed. The former was poorly phase-specific, occurred earlier and exploited the apoptotic mechanism more than p53-independent death.Computer simulation produced a framework where previous partial and sometimes apparently contradictory observations of the p53-mediated effects could be reconciled and explained.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号