首页 | 本学科首页   官方微博 | 高级检索  
   检索      


AKAP79 modulation of L-type channels involves disruption of intramolecular interactions in the CaV1.2 subunit
Abstract:L-type voltage gated calcium channels (VGCCs) interact with a variety of proteins that modulate both their function and localization. A-Kinase Anchoring Proteins (AKAPs) facilitate L-type calcium channel phosphorylation through β adrenergic stimulation. Our previous work indicated a role of neuronal AKAP79/150 in the membrane targeting of CaV1.2 L-type calcium channels, which involved a proline rich domain (PRD) in the intracellular II-III loop of the channel.1 Altier C, Dubel SJ, Barrère C, Jarvis SE, Stotz SC, Spaetgens RL, et al. Trafficking of L-type calcium channels mediated by the postsynaptic scaffolding protein AKAP79. J Biol Chem 2002; 277:33598 - 603; http://dx.doi.org/10.1074/jbc.M202476200; PMID: 12114507 Crossref], PubMed], Web of Science ®] Google Scholar] Here, we show that mutation of proline 857 to alanine (P857A) into the PRD does not disrupt the AKAP79-induced increase in Cav1.2 membrane expression. Furthermore, deletion of two other PRDs into the carboxy terminal domain of CaV1.2 did not alter the targeting role of AKAP79. In contrast, the distal carboxy terminus region of the channel directly interacts with AKAP79. This protein-protein interaction competes with a direct association of the channel II-III linker on the carboxy terminal tail and modulates membrane targeting of CaV1.2. Thus, our results suggest that the effects of AKAP79 occur through relief of an autoinhibitory mechanism mediated by intramolecular interactions of Cav1.2 intracellular regions.
Keywords:calcium channels  L-type  Cav1  2  AKAP79  AKAP18  Proline rich domain  Leucine Zipper motif
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号