首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular determinants of sensitivity and conductivity of human TRPM7 to Mg2+ and Ca2+
Abstract:It is known that extracellular Mg2+ and Ca2+ can permeate TRPM7 and at the same time block the permeation by monovalent cations. In the present study, we examined the molecular basis for the conductivity and sensitivity of human TRPM7 to these divalent cations. Extracellular acidification to pH 4.0 markedly reduced the blocking effects of Mg2+ and Ca2+ on the Cs+ currents, decreasing their binding affinities: their IC50 values increased 510- and 447-fold, respectively. We examined the effects of neutralizing each of four negatively charged amino acid residues, Glu-1047, Glu-1052, Asp-1054 and Asp-1059, within the putative pore-forming region of human TRPM7. Mutating Glu-1047 to alanine (E1047A) resulted in non-functional channels, whereas mutating any of the other residues resulted in functionally expressed channels. Cs+ currents through D1054A and E1052A were less sensitive to block by divalent cations; the IC50 values were increased 5.5- and 3.9-fold, respectively, for Mg2+ and 10.5- and 6.7-fold, respectively, for Ca2+. D1059A also had a significant reduction, though less marked compared to the reductions seen for D1054A and E1052A, in sensitivity to Mg2+ (1.7-fold) and Ca2+ (3.9-fold). The D1054A mutation largely abolished inward currents conveyed by Mg2+ and Ca2+. In the E1052A and D1059A mutants, inward Mg2+ and Ca2+ currents were sizable but significantly diminished. Thus, it is concluded that in human TRPM7, (1) both Asp-1054 and Glu-1052, which are located near the narrowest portion in the pore's selectivity filter, may provide the binding sites for Mg2+ and Ca2+, (2) Asp-1054 is an essential determinant of Mg2+ and Ca2+ conductivity, and (3) Glu-1052 and Asp-1059 facilitate the conduction of divalent cations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号