首页 | 本学科首页   官方微博 | 高级检索  
     


Distinct glycosyltransferases synthesize E-selectin ligands in human vs. mouse leukocytes
Authors:Nandini Mondal  Alexander Buffone Jr.   Sriram Neelamegham
Affiliation:Chemical and Biological Engineering and The NY State Center for Excellence in Bioinformatics and Life Sciences; State University of New York; Buffalo, NY USA
Abstract:The binding of selectins to carbohydrate epitopes expressed on leukocytes is the first step in a multi-step cell adhesion cascade that controls the rate of leukocyte recruitment at sites of inflammation. The glycans that function as selectin-ligands are post-translationally synthesized by the serial action of Golgi resident enzymes called glycosyltransferases (glycoTs). Whereas much of our current knowledge regarding the role of glycoTs in constructing selectin-ligands comes from reconstituted biochemical investigations or murine models, tools to assess the impact of these enzymes on the human ligands are relatively underdeveloped. This is significant since the selectin-ligands, particularly those that bind E-selectin, vary between different leukocyte cell populations and they are also different in humans compared with mice. To address this shortcoming, a recent study by Buffone et al. (2013) outlines a systematic strategy to knockdown upto three glycoTs simultaneously in human leukocytes. The results suggest that the fucosyltransferases (FUTs) regulating selectin-ligand synthesis may be species-specific. In particular, they demonstrate that FUT9 plays a significant role during human, but not mouse, leukocyte-endothelial interactions. Overall, this article discusses the relative roles of the FUTs during human L-, E-, and P-selectin-ligand biosynthesis, and the potential that the knockdown strategy outlined here may assess the role of other glycoTs in human leukocytes also.
Keywords:leukocyte  endothelial cell  inflammation  carbohydrate  selectin  cell adhesion  fluid shear  sialyl Lewis-X  glycosyltransferase  fucosyltransferase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号