首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phosphoinositide 3-kinase signaling overrides a G2 phase arrest checkpoint and promotes aberrant cell cycling and death of hematopoietic cells after DNA damage
Abstract:DNA damage activates arrest checkpoints to halt cell cycle progression in G1 and G2 phases. These checkpoints can be overridden in hematopoietic cells by cytokines, such as erythropoietin, through the activation of a phosphoinositide 3-kinase (PI3K) signaling pathway. Here, we show that PI3K activity specifically overrides delayed mechanisms effecting permanent G1 and G2 phase arrests, but does not affect transient checkpoints arresting cells up to 10 hours after gamma-irradiation. Assessing the status of cell cycle regulators in hematopoietic cells arrested after gamma-irradiation, we show that Cdk2 activity is completely inhibited in both G1 and G2 arrested cells. Despite the absence of Cdk2 activity, cells arrested in G2 phase did retain detectable levels of Cdk1 activity in the absence of PI3K signaling. However, reactivation of PI3K promoted robust increases in both Cdk1 and Cdk2 activity in G2-arrested cells. Reactivation of Cdks was accompanied by a resumption of cell cycling, but with strikingly different effectiveness in G1 and G2 phase arrested cells. Specifically, G1-arrested cells resumed normal cell cycle progression with little loss in viability when PI3K was activated after gamma-irradiation. Conversely, PI3K activation in G2-arrested cells promoted endoreduplication and death of the entire population. These observations show that cytokine-induced PI3K signaling pathways promote Cdk activation and override permanent cell cycle arrest checkpoints in hematopoietic cells. While this activity can rescue irradiated cells from permanent G1 phase arrest, it results in aberrant cell cycling and death when activated in hematopoietic cells arrested at the G2 phase DNA damage checkpoint.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号