首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Silencing of LMP1 Induces Cell Cycle Arrest and Enhances Chemosensitivity Through Inhibition of AKT Signaling Pathway in EBV-Positive Nasopharyngeal Carcinoma Cells
Abstract:The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC). In this study, we investigated that the effect of silencing LMP1 on cell cycle distribution and chemosensitivity in EBV-positive nasopharyngeal carcinoma C666-1 cells. Silencing of LMP1 by specific siRNA induced G1 arrest in C666-1 cells. The protein expression of CDK4 and cyclin D1 decreased and P27 was upregulated following LMP1 knockdown. Phosphorylation of AKT and its downstream targets IКB, FKHR was inhibited by LMP1 siRNA. The chemosensitivity of C666-1 cells to bleomycin and cisplatin was enhanced by siRNA targeting LMP1. The cells treated with LMP1 siRNA showed enhanced cleavage of the effector caspase3 and PARP, and Bax had the tendency to exhibit higher expression. Also, co-transfection of constitutive active AKT plasmid with LMP-1 siRNA plasmid abrogates sensitivity of C666-1 to bleomycin and cisplatin. It is reported for the first time that AKT signaling pathway was directly involved in the effects induced by siRNA targeting LMP1. Our findings confirm LMP1 as a rational therapeutic target in NPC.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号