首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of P deficiency on the uptake, flows and utilization of C, N and H2O within intact plants of Ricinus communis L.
Authors:Jeschke  W Dieter; Peuke  Andreas; Kirkby  Ernest A; Pate  John S; Hartung  Wolfram
Abstract:The influence of P deficiency on the uptake, flow and utilizationof C, N and H20 by intact NO3-fed castor bean plants {Ricinuscommunis L.) was studied over a 9 d period in the middle oftheir vegetative growth. The modelling techniques incorporateddata on net increments or losses of C, N and H2O in plant parts,photosynthetic gains in and respiratory losses of C, molar C:Nratios of solutes in phloem and xylem sap and transpirationallosses of H20. Plant growth was inhibited within 3 d of withholdingP supply and dry matter production was less than one-third ofthe controls. Leaf growth was particularly depressed, whileroot growth was much less affected than that of the shoot. Shoot:rootratio of low-P plants was 1.5 compared with 2.6 under P supply.Over the 9 d study period total plant C and N increased by 560and 47 mmol, respectively, in the controls, but by only 113and 6.9 mmol in the low-P treatment. The particularly low incrementof N in P-deficient plants was due principally to decreasedN03- uptake. Flows of C and N during the study period were markedlydifferent between control and P-deficient plants. The partitioningprofile for C in P-deficient plants showed a dramatic inhibitionof net photosynthesis and attendant photoassimilate flow. Proportionaldownward to upward allocation of carbon increased with increasein sink size of the root relative to shoot. This was reflectedin greater relative allocation of C to root dry matter and rootrespiration than in P-sufficient plants, and suppressed cyclingof C from root to shoot via xylem. Nitrogen intake and xylemtransport to the shoot of P-deficient plants were only 15% ofthe control and, as in the case of C, downward allocation ofN predominated over upward phloem translocation. Apart fromthese severe changes, however, the basic patterns of N flowsincluding xylem-to-phloem and xylem-to-xylem transfer of N werenot changed, a feature highlighting the vital nature of thesetransfer processes even under deficiency conditions. The alterationsin flows and partitioning of C, N and H2O in response to low-Pconditions are discussed in relation to the corresponding effectsof moderate salt stress in Ricinus and the conclusion is reachedthat changes in nutrient flows under P deficiency were morehighly co-ordinated than when plants experience salt stress.Flow profiles under P deficiency which favour root growth andactivity are viewed as a means for increasing the potentialcapability of the plant to acquire P from the nutrient medium. Key words: Ricinus communis L., P deficiency, carbon, nitrogen, water, partitioning, xylem transport, phloem transport
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号