首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamic macroecology on ecological time-scales
Authors:Jonathan A D Fisher  Kenneth T Frank  William C Leggett
Institution:Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6,;Ocean Sciences Division, Bedford Institute of Oceanography, PO Box 1006, Dartmouth, Nova Scotia, Canada B2Y 4A2
Abstract:Aim The discipline of macroecology is increasingly being regarded as an effective vehicle for the evaluation of recent population‐ to ecosystem‐level responses to widespread human and environmental influences. However, due to the prevalent use of time‐averaged and cumulative data in macroecological analyses, the majority of the patterns that emerge from research in this field can be regarded as static. Here we review the application of dynamic macroecological analyses to changes in relationships between macroecological variables on seasonal to decadal scales. We illustrate the strength of this perspective for documenting changing patterns and testing hypotheses related to these dynamics on ecological time‐scales. Location Studies were compiled and reviewed from terrestrial and aquatic ecosystems. Methods We review examples of temporal changes in macroecological patterns driven by recent anthropogenic influences and environmental change. Results The dynamic nature of macroecological patterns on ecological time‐scales has been revealed in recent years across a wide range of ecosystems, largely through the development, maintenance and analysis of biotic and environmental monitoring time series. The resultant analyses complement examinations of dynamics over evolutionary time and have similarly revealed that static portrayals can conceal important temporal dynamics that underlie the patterns of interest. As a consequence, static depictions, resting as they do on comparative analyses in which the validity of space‐for‐time substitutions is assumed, may be of limited use for testing hypotheses related to the mechanisms underlying the patterns revealed and, by extension, the development of reliable predictions of future states. Main conclusions Recent dynamic macroecological analyses have demonstrated the utility of combined spatial and temporal replication, and have contributed to hypothesis testing related to the mechanistic processes underlying changes in macroecological patterns on ecological time‐scales. We suggest four specific avenues of future research to further the development and application of temporal approaches on similar time‐scales within the field of macroecology.
Keywords:Abundance  body size  climate change  conservation  geographical range  human impacts  space-for-time substitution  species richness  temporal trends  trophic control
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号