首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubule cells
Authors:Lee Wing-Kee  Torchalski Blazej  Thévenod Frank
Institution:Dept. of Physiology & Pathophysiology, Univ. of Witten/Herdecke, Faculty of Medicine, D-58448 Witten, Germany.
Abstract:A major target of cadmium (Cd2+) toxicity is the kidney proximal tubule (PT) cell. Cd2+-induced apoptosis of PT cells is mediated by sequential activation of calpains at 3–6 h and caspases-9 and -3 after 24-h exposure. Calpains also partly contribute to caspase activation, which emphasizes the importance of calpains for PT apoptosis by Cd2+. Upstream processes underlying Cd2+-induced calpain activation remain unclear. We describe for the first time that 10–50 µM Cd2+ causes a significant increase in ceramide formation by ~22% (3 h) and ~72% (24 h), as measured by diacylglycerol kinase assay. Inhibition of ceramide synthase with fumonisin B1 (3 µM) prevents ceramide formation at 3 h and abolishes calpain activation at 6 h, which is associated with significant attenuation of apoptosis at 3–6 h with Hoechst 33342 nuclear staining and/or 3(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) death assays. This indicates that Cd2+ enhances de novo ceramide synthesis and that calpains are a downstream target of ceramides in apoptosis execution. Moreover, addition of C6-ceramide to PT cells increases cytosolic Ca2+ and activates calpains. Apoptosis mediated by C6-ceramide at 24 h is significantly reduced by caspase-3 inhibition, which supports cross talk between calpain- and caspase-dependent apoptotic pathways. We conclude that Cd2+-induced apoptosis of PT cells entails endogenous ceramide elevation and subsequent Ca2+-dependent calpain activation, which propagates kidney damage by Cd2+. nephrotoxicity; cell signaling; cell biology and structure
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号