首页 | 本学科首页   官方微博 | 高级检索  
     


First green synthesis of (R)-2-methyl-1-phenylpropan-1-ol using whole-cell Lactobacillus paracasei BD101 biotransformation
Authors:Engin Şahin
Affiliation:1. Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt, Turkeyesahin@bayburt.edu.tr
Abstract:Abstract

Green chemistry includes a novel process in the production of drugs precursors and biological active molecules using biocatalysts, so reducing the threats for human sanitary and ecological pollutions. Asymmetric bioreduction of prochiral ketones by biocatalysts is one of the best prevalent used methods in synthetic organic chemistry due to the production of enantiopure chiral carbinols. This study emphasizes the application biocatalyst L paracasei BD101 for enantioselective bioreduction of 2-methyl-1-phenylpropan-1-one ketone, which contain branched alkyl chain, to (R)-2-methyl-1-phenylpropan-1-ol ((R)-2) in high yields and excellent enantiomeric excess (>99%). The scale-up production was performed, and 4.61?g of (R)-2 in enantiopure form was synthesized. L paracasei BD101 was proved to be a substantial biocatalyst in asymmetric bioreduction of a ketone which contains a branched alkyl chain. There is not any work in the literature similar to our study. Hence, it is important to work on filling this gap. This study is the first example for an enantiopure synthesis of (R)-2 by a biocatalyst. The new green method was developed for bioreduction of bulky ketones, which contains a branched alkyl chain, and it approves the synthesis of novel chiral carbinols in an easy, cheap, and environmentally friendly condition using L paracasei BD101.
Keywords:Chirality  biocatalyst  green synthesis  enantioselective bioreduction  (R)-2-methyl-1-phenylpropan-1-ol
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号