首页 | 本学科首页   官方微博 | 高级检索  
     


Gap junctional intercellular communication of bovine luteal cells from several stages of the estrous cycle: Effects of prostaglandin F2α, protein kinase C and calcium
Authors:A.T. Grazul-Bilska   L.P. Reynolds   J.D. Kirsch   J.J. Bilski  D.A. Redme
Affiliation:aDepartment of Animal and Range Sciences North Dakota State University, Fargo, ND 58105, U.S.A.;bDepartment of Cell Biology Center, North Dakota State University, Fargo, ND 58105, U.S.A.
Abstract:Cellular interactions mediated by both contact-dependent and contact-independent mechanisms are probably important to maintain luteal function. The present studies were performed to evaluate the effects of luteotropic and luteolytic hormones, and also intracellular regulators, on contact-dependent gap junctional intercellular communication (GJIC) of bovine luteal cells from several stages of luteal development. Bovine corpora lutea (CL) from the early, mid and late luteal phases of the estrous cycle were dispersed with collagenase and incubated with no treatment, LH, PGF or LH + PGF (Experiment 1), or with no treatment, or agonists or antagonists of protein kinase C (TPA or H-7) or calcium (A23187 or EGTA; Experiment 2). After incubation, media were collected for determination of progesterone concentrations. Then the rate of GJIC was evaluated for small luteal cells in contact with small luteal cells, and large luteal cells in contact with small luteal cells by using the fluorescence recovery after photobleaching technique and laser cytometry. Luteal cells from each stage of the estrous cycle exhibited GJIC, but the rate of GJIC was least (P<0.05) for luteal cells from the late luteal phase. LH increased (P<0.05) GJIC between small luteal cells from the mid and late but not the early luteal phase. PGF increased (P<0.05) GjIC between small luteal cells from the mid luteal phase and diminished (P<0.05) LH-stimulatory effects on GjIC between small luteal cells from the late luteal phase. Throughout the estrous cycle, TPA decreased (P<0.05) the rate of GjIC between large and small, and between small luteal cells, and A23187 decreased (P<0.05) the rate of GJIC between large and small luteal cells. LH and LH + PGF, but not PGF alone increased (P<0.05) progesterone secretion by luteal cells from the mid and late luteal phases. Agonists or antagonists of PKC or calcium did not affect progesterone secretion by luteal cells. These data demonstrate that both luteal cell types communicate with small luteal cells, and the rate of communication depends on the stage of luteal development. LH and PGF affect GjIC between small luteal cells during the fully differentiated (mid-luteal) and regressing (late luteal) stages of the estrous cycle. In contrast, at all stages of luteal development, activation of PKC decreases GjIC between small and between large and small luteal cells, whereas calcium ionophore decreases GjIC only between large and small luteal cells. Luteotropic and luteolytic hormones, and intracellular regulators, may be involved in regulation of cellular interactions within bovine CL which likely is an important mechanism for coordination of luteal function.
Keywords:intercellular communication   gap junctions   prostaglandin F     corpora lutea   cow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号