首页 | 本学科首页   官方微博 | 高级检索  
     


In Vitro Reconstitution of a CaMKII Memory Switch by an NMDA Receptor-Derived Peptide
Authors:Hidetoshi Urakubo  Miharu Sato  Shin Ishii  Shinya Kuroda
Affiliation: Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
Abstract:Ca2+/Calmodulin-dependent protein kinase II (CaMKII) has been shown to play a major role in establishing memories through complex molecular interactions including phosphorylation of multiple synaptic targets. However, it is still controversial whether CaMKII itself serves as a molecular memory because of a lack of direct evidence. Here, we show that a single holoenzyme of CaMKII per se serves as an erasable molecular memory switch. We reconstituted Ca2+/Calmodulin-dependent CaMKII autophosphorylation in the presence of protein phosphatase 1 in vitro, and found that CaMKII phosphorylation shows a switch-like response with history dependence (hysteresis) only in the presence of an N-methyl-D-aspartate receptor-derived peptide. This hysteresis is Ca2+ and protein phosphatase 1 concentration-dependent, indicating that the CaMKII memory switch is not simply caused by an N-methyl-D-aspartate receptor-derived peptide lock of CaMKII in an active conformation. Mutation of a phosphorylation site of the peptide shifted the Ca2+ range of hysteresis. These functions may be crucial for induction and maintenance of long-term synaptic plasticity at hippocampal synapses.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号