首页 | 本学科首页   官方微博 | 高级检索  
     


Mapping the Energy and Diffusion Landscapes of Membrane Proteins at the Cell Surface Using High-Density Single-Molecule Imaging and Bayesian Inference: Application to the Multiscale Dynamics of Glycine Receptors in the Neuronal Membrane
Authors:Jean-Baptiste Masson,Patrice Dionne,Charlotte Salvatico,Marianne Renner,Christian   G. Specht,Antoine Triller,Maxime Dahan
Affiliation: Physics of Biological Systems, Pasteur Institute, Paris, France; Centre National de la Recherche Scientifique UMR 3525, Paris, France;§ Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique UMR 8552, Ecole Normale Superieure, Paris, France; Centre de Recherche Universit Laval Robert-Giffard, Quebec, Canada;|| Biologie Cellulaire de la Synapse, Institut National de la Sante et de la Recherche Medicale U1024, Institut de Biologie de l’Ecole Normale Superieure, Paris, France;∗∗ Laboratoire Physico-Chimie, Institut Curie, Centre National de la Recherche Scientifique UMR 168, Universit Pierre et Marie Curie-Paris 6, Paris, France
Abstract:Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ∼100 nm resolution (with acquisition of a few minutes). Upon applying these analytical tools to glycine neurotransmitter receptors at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (∼3 kBT) for glycine neurotransmitter receptors, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiological parameters (such as the number of receptors at synapses). Overall, our approach provides a powerful and comprehensive framework with which to analyze biochemical interactions in living cells and to decipher the multiscale dynamics of biomolecules in complex cellular environments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号