首页 | 本学科首页   官方微博 | 高级检索  
     


Role of the Calcium-Binding Residues Asp231, Asp233, and Asp438 in Alpha-Amylase of Bacillus amyloliquefaciens as Revealed by Mutational Analysis
Authors:Yang Liu  Wei Shen  Gui-yang Shi  Zheng-xiang Wang
Affiliation:(1) The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China;(2) Center for Bioresource & Bioenergy, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
Abstract:Role of the calcium-binding residues Asp231, Asp233, and Asp438 of Bacillus amyloliquefaciens α-amylase (BAA) on the enzyme properties was investigated by site-directed mutagenesis. The calcium-binding residues Asp231, Asp233, and Asp438 were replaced with Asn, Asn, and Gly to produce the mutants D231N, D233N, and D438G, respectively. The mutant amylases were purified to homogeneity and the purified enzymes was estimated to be approximately 58 kDa. The specific activity for the mutant enzyme D233N was decreased by 84.8%, while D231N and D438G showed a decrease of 6.3% and 3.5% to that of the wild-type enzyme, respectively. No significant changes in the K m value, thermo-stability, optimum temperature, and optimum pH were observed in the mutations of D231N and D438G, while substitution of Asp233 with Asn resulted in a dramatic reduction in the value of catalytic efficiency (K cat/K m) and thermo-stability at 60°C. The ranges of optimum temperature and optimum pH for D233N were also reduced to about 10°C and 3–4 units, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号