首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ways to measure body temperature in the field
Institution:1. School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK;2. Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7624 Pécs, 12 Szigeti str, Hungary;3. Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, England, UK
Abstract:Body temperature (Tb) represents one of the key parameters in ecophysiological studies with focus on energy saving strategies. In this study we therefore comparatively evaluated the usefulness of two types of temperature-sensitive passive transponders (LifeChips and IPTT-300) and one data logger (iButton, DS1922L) mounted onto a collar to measure Tb in the field. First we tested the accuracy of all three devices in a water bath with water temperature ranging from 0 to 40 °C. Second, we evaluated the usefulness of the LifeChips and the modified iButtons for measuring Tb of small heterothermic mammals under field conditions. For this work we subcutaneously implanted 14 male edible dormice (Glis glis) with transponders, and equipped another 14 males with data loggers to simultaneously record Tb and oxygen consumption with a portable oxygen analyzer (Oxbox). In one individual we recorded Tb with both devices and analyzed recorded Tb patterns.LifeChips are able to measure temperature within the smallest range from 25 to 40 °C with an accuracy of 0.07±0.12 °C. IPTT-300 transponders measured temperature between 10 and 40 °C, but accuracy decreased considerably at values below 30 °C, with maximal deviations of nearly 7 °C. An individual calibration of each transponder is therefore needed, before using it at low Tbs. The accuracy of the data logger was comparatively good (0.12±0.25 °C) and stable over the whole temperature range tested (0–40 °C). In all three devices, the repeatability of measurements was high.LifeChip transponders as well as modified iButtons measured Tb reliably under field conditions. Simultaneous Tb-recordings in one edible dormouse with an implanted LifeChip and a collar-mounted iButton revealed that values of both measurements were closely correlated. Taken together, we conclude that implanted temperature-sensitive transponders represent an appropriate and largely non-invasive method to measure Tb also under field conditions.
Keywords:Body temperature  Heterotherm  Data logger  iButton  Passive transponder
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号