首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Time-dependent decay and anisotropy of fluorescence from diphenylhexatriene embedded in the chloroplast thylakoid membrane
Authors:RC Ford  J Barber
Institution:ARC Photosynthesis Research Group, Department of Pure and Applied Biology, Imperial College, London SW7 2BB U.K.
Abstract:The hydrophobic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene has been incorporated into the membranes of isolated thylakoids, separated granal and stromal lamellae and aqueous dispersions of extracted thylakoid galactolipids. Time-resolved fluorescence decays have been recorded on a nanosecond scale using single-photon counting in order to assess the motional properties of the probe. All the experimental systems used showed biphasic decay kinetics and the anisotropies of the decays have been interpreted in terms of a model for wobbling diffusion confined to a cone. The analysis has given information about dynamic and structural restraints of the lipid acyl chains. In the intact thylakoid membrane the degree of order of the fatty acid acyl chains is higher and their rate of motion slower than for isolated lipids. Even so, the dynamic and structural parameters indicate that the thylakoids can be considered as a relatively fluid membrane system when compared with many other biological membranes, a property which is probably required to facilitate efficient long-range diffusion of lipophilic mobile electron-transport components. It is suggested that the optimization of thylakoid fluidity is linked to regulation of the membrane protein/lipid ratio which is also likely to be responsible for the higher fluidity of stromal membranes relative to those of the grana.
Keywords:Diphenylhexatriene  Fluorescence anisotropy  Fluorescence decay  Membrane fluidity  Thylakoid membrane  (Pea chloroplast)  PS  photosystem
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号