首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ATP-driven reduction by dark-operative protochlorophyllide oxidoreductase from Chlorobium tepidum mechanistically resembles nitrogenase catalysis
Authors:Bröcker Markus J  Virus Simone  Ganskow Stefanie  Heathcote Peter  Heinz Dirk W  Schubert Wolf-Dieter  Jahn Dieter  Moser Jürgen
Institution:Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany.
Abstract:During chlorophyll and bacteriochlorophyll biosynthesis in gymnosperms, algae, and photosynthetic bacteria, dark-operative protochlorophyllide oxidoreductase (DPOR) reduces ring D of aromatic protochlorophyllide stereospecifically to produce chlorophyllide. We describe the heterologous overproduction of DPOR subunits BchN, BchB, and BchL from Chlorobium tepidum in Escherichia coli allowing their purification to apparent homogeneity. The catalytic activity was found to be 3.15 nmol min(-1) mg(-1) with K(m) values of 6.1 microm for protochlorophyllide, 13.5 microm for ATP, and 52.7 microm for the reductant dithionite. To identify residues important in DPOR function, 21 enzyme variants were generated by site-directed mutagenesis and investigated for their metal content, spectroscopic features, and catalytic activity. Two cysteine residues (Cys(97) and Cys(131)) of homodimeric BchL(2) are found to coordinate an intersubunit 4Fe-4S] cluster, essential for low potential electron transfer to (BchNB)(2) as part of the reduction of the protochlorophyllide substrate. Similarly, Lys(10) and Leu(126) are crucial to ATP-driven electron transfer from BchL(2). The activation energy of DPOR electron transfer is 22.2 kJ mol(-1) indicating a requirement for 4 ATP per catalytic cycle. At the amino acid level, BchL is 33% identical to the nitrogenase subunit NifH allowing a first tentative structural model to be proposed. In (BchNB)(2), we find that four cysteine residues, three from BchN (Cys(21), Cys(46), and Cys(103)) and one from BchB (Cys(94)), coordinate a second inter-subunit 4Fe-4S] cluster required for catalysis. No evidence for any type of molybdenum-containing cofactor was found, indicating that the DPOR subunit BchN clearly differs from the homologous nitrogenase subunit NifD. Based on the available data we propose an enzymatic mechanism of DPOR.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号