首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mineralization of soil nitrogen in three forest communities from the New England region of New South Wales
Authors:B N RICHARDS  J E N SMITH  G J WHITE  J L CHARLEY
Abstract:Nitrogen (N) mineralization rates and the temperature response patterns of mineral N production in surface (0–7.6 cm) soils were compared in laboratory incubation studies based on disturbed, composite samples. Seasonal variation in the field levels of mineral N, and mineralization potential of intact (7.6 × 5.6 cm diameter) soil cores, were also investigated. Ammonification proceeded rapidly in each soil. Nitrification did not occur in grassy forest (GF) soil but was active in both layered forest (LF) and mossy forest (MF) soils, especially the former. Total mineral N production was greatest in MF and least in LF. Ammonification in disturbed samples was maximal at 50°C in all three soils with a secondary peak at 10°C in LF soil. Nitrification in LF and MF soils was most rapid at 25°C. Several species of ammonifying bacteria with different temperature optima were isolated, indicating that the process of ammonification is a composite of the activities of a variety of decomposer microbes. Mean field levels of mineral N and NH4–N throughout the year were greatest in MF and least in LF. Seasonal fluctuations in NH4–N were evident, concentrations being universally low in mid-winter (about 1.5 μgg-1), increasing to a maximum in late summer (about 5 μg g-1 in LF: 16–18 μg g-1 in GF and MF). Field levels of NO3–N were more constant and never more than 5 μg g-1 in any community. Both total mineralization and ammonification in intact cores were greatest in MF and least in LF while nitrification was greatest in LF and almost negligible in GF, thus confirming the results obtained with disturbed samples. The potential for mineralization was large in mid-winter when the amount of mineral N was very low, and small in late summer when field levels were higher: this is interpreted as indicating that seasonal climatic factors regulate the availability of substrates for decomposers. Spatial variability in field levels of mineral N and mineral N production in the laboratory was evidenced by significant ‘sampling site’ effects in each community: however, at the sampling intensity used, the presence of bark mounds around Eucalyptus saligna trees could not be shown to affect these attributes. The inability of GF soil to nitrify when incubated in the laboratory could not be ascribed to a high C/N ratio, low pH, lack of substrate ammonium, or a low population of autotrophic nitrifying bacteria. No attempt was made to investigate the presence of allelopathic nitrification inhibitors. No evidence was obtained to support the view that nitrification is atypical of climax communities in situ. The most productive forest (LF) had the greatest capacity to nitrify and the least productive community (GF) the smallest capacity to do so.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号