首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola
Authors:Rolf G Beutel  Frank Friedrich  Thomas Hörnschemeyer  Hans Pohl  Frank Hünefeld  Felix Beckmann  Rudolf Meier  Bernhard Misof  Michael F Whiting  Lars Vilhelmsen
Institution:1. Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, FSU Jena, Erbertstrasse 1, 07743 Jena, Germany;2. Biozentrum Grindel und Zoologisches Museum, Martin‐Luther‐King‐Platz 3, Universit?t Hamburg, 20146 Hamburg, Germany;3. Institut für Zoologie und Anthropologie der Universit?t, Berlinerstr. 28, 37073?G?ttingen, Germany;4. Institute for Materials Research GKSS‐Research Center, c/o GKSS at DESY, Notkestr. 85, 22607 Hamburg, Germany;5. Department of Biological Sciences, National University of Singapore, 14 Science Dr 4, Block S2 #02‐01, Singapore 117543;6. Zoologisches Forschungsmuseum Alexander K?nig, Abteilung Molekulare Biodiversit?tsforschung, Adenauerallee 160, 53113 Bonn, Germany;7. Department of Biology, 693 Widtsoe Building, Brigham Young University, Provo, UT 84602, USA;8. Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK‐2100, Denmark
Abstract:We present the largest morphological character set ever compiled for Holometabola. This was made possible through an optimized acquisition of data. Based on our analyses and recently published hypotheses based on molecular data, we discuss higher‐level phylogeny and evolutionary changes. We comment on the information content of different character systems and discuss the role of morphology in the age of phylogenomics. Microcomputer tomography in combination with other techniques proved highly efficient for acquiring and documenting morphological data. Detailed anatomical information (356 characters) is now available for 30 representatives of all holometabolan orders. A combination of traditional and novel techniques complemented each other and rapidly provided reliable data. In addition, our approach facilitates documenting the anatomy of model organisms. Our results show little congruence with studies based on rRNA, but confirm most clades retrieved in a recent study based on nuclear genes: Holometabola excluding Hymenoptera, Coleopterida (= Strepsiptera + Coleoptera), Neuropterida excl. Neuroptera, and Mecoptera. Mecopterida (= Antliophora + Amphiesmenoptera) was retrieved only in Bayesian analyses. All orders except Megaloptera are monophyletic. Problems in the analyses are caused by taxa with numerous autapomorphies and/or inapplicable character states due to the loss of major structures (such as wings). Different factors have contributed to the evolutionary success of various holometabolan lineages. It is likely that good flying performance, the ability to occupy different habitats as larvae and adults, parasitism, liquid feeding, and co‐evolution with flowering plants have played important roles. We argue that even in the “age of phylogenomics”, comparative morphology will still play a vital role. In addition, morphology is essential for reconstructing major evolutionary transformations at the phenotypic level, for testing evolutionary scenarios, and for placing fossil taxa.
© The Willi Hennig Society 2010.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号