首页 | 本学科首页   官方微博 | 高级检索  
     


Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study
Authors:R.?Ponce-Pérez  author-information"  >  author-information__contact u-icon-before"  >  mailto:rponce@ifuap.buap.mx"   title="  rponce@ifuap.buap.mx"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author  author-information__orcid u-icon-before icon--orcid u-icon-no-repeat"  >  http://orcid.org/---"   itemprop="  url"   title="  View OrcID profile"   target="  _blank"   rel="  noopener"   data-track="  click"   data-track-action="  OrcID"   data-track-label="  "  >View author&#  s OrcID profile,Gregorio?H.?Cocoletzi,Noboru?Takeuchi
Affiliation:1.Benemérita Universidad Autónoma de Puebla, Instituto de Física,Puebla,México;2.Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología,Ensenada,México
Abstract:Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of ?0.82 eV and ?0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of ?1.52 eV and ?1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism.
Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号