首页 | 本学科首页   官方微博 | 高级检索  
     


Enantiomeric 9‐mer peptide analogs of protaetiamycine with bacterial cell selectivities and anti‐inflammatory activities
Authors:Eunjung Lee  Jin‐Kyoung Kim  Soyoung Shin  Ki‐Woong Jeong  Juneyoung Lee  Dong Gun Lee  Jae‐Sam Hwang  Yangmee Kim
Affiliation:1. Department of Bioscience and Biotechnology, Konkuk University, Seoul 143‐701, Korea;2. School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702‐701, Korea;3. Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Rural Development Administration (RDA), Suwon 441‐100, Korea
Abstract:Protaetiamycine is an insect defensin, derived from the larvae of the beetle Protaetia brevitarsis. In our previous work, we designed 9‐mer peptide analogs of protaetiamycine, including 9Pbw2 (RLWLAIKRR‐NH2), 9Pbw3 (RLWLAIWRR‐NH2), and 9Pbw4 (RLWLAWKRR‐NH2). 9Pbw2 and 9Pbw4 showed high antimicrobial activity without cytotoxicity, while 9Pbw3 with higher hydrophobicity compared to 9Pbw2 and 9Pbw4 showed high cytotoxicity as well as high antimicrobial activity (Shin et al., J. Pept. Sci. 2009; 15: 559–568). In this study, we investigated the anti‐inflammatory activities of 9Pbw2, 9Pbw3, and 9Pbw4 by quantitation of NO production in LPS‐stimulated RAW264.7 cells. The results showed that only 9Pbw3 has strong inhibition of NO production, implying that Trp7 as well as optimum level of hydrophobicity may play key roles in the anti‐inflammatory activity of 9Pbw3. In order to design potent anti‐inflammatory peptide with lower cytotoxicity as well as high stability from cleavage by protease compared to 9Pbw3, we synthesized 9Pbw3‐D , the all‐D ‐amino acid analog of 9Pbw3. 9Pbw3‐D showed less cytotoxicity against RAW264.7 cells as well as considerably stronger inhibition of NO production and inflammation‐induced cytokine production in LPS‐stimulated RAW264.7 cells than 9Pbw3. 9Pbw3‐D inhibited the gene expression of inflammatory‐induced cytokine significantly more than 9Pbw3 and showed high resistance to proteolytic digestion. Binding of 9Pbw3‐D with LPS caused higher enhancement of the FITC fluorescence as a result of its stronger interaction with LPS compared to that of 9Pbw3 and this result is in good agreement with their anti‐inflammatory activities. 9Pbw3‐D with higher anti‐inflammatory activity as well as lower cytotoxicity against mammalian cell compared to 9Pbw3 can be a potent noncytotoxic antibiotic candidates. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.
Keywords:protaetiamycine  antimicrobial peptide  bacterial cell selectivity  anti‐inflammatory activity  enantiomeric analog
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号